1 |
High Temperature Superconducting Partial Core Transformer and Fault Current LimiterSham,Jit Kumar January 2015 (has links)
The thesis begins with an introduction to transformer theory. The partial core transformer is then introduced and compared with a full core design. A brief introduction to superconductors and high temperature superconductors is then presented. High temperature superconducting fault current limiters are then examined and the advantage of a high temperature superconducting partial core transformer and fault current limiter as a single unit is highlighted.
The reverse design model is discussed followed by the model parameters that are used in designing the high temperature superconducting partial core transformer. Partial core transformers with copper windings and high temperature superconductor windings at the University of Canterbury were then tested and the measured results compared with the results calculated from the reverse design model, to validate the model. The high temperature superconducting partial core transformer failed during an endurance run and the investigation of the failure is then presented. The results of the failure investigation prompted an alternative winding insulation design. A model to calculate the time at which the high temperature superconducting winding of the partial core transformer would melt at different currents was then built. The time was calculated to be used in the operation of the quench detection mechanism and it could also be used in choosing a circuit breaker with a known operating time.
The design of the high temperature superconducting partial core transformer and fault current limiter is then presented. Design configurations with different core length and winding length are examined. The idea behind choosing the final design for the high temperature superconducting partial core transformer and fault current limiter is then discussed. The final design of the high temperature superconducting partial core transformer and fault current limiter is then presented.
A new 7.5 kVA, 230-248 V high temperature superconducting partial core transformer and fault current limiter was designed, built and tested. The windings are layer wound with first generation Bi2223 high temperature superconductor. A series of electrical tests were performed on the new device including open circuit, short circuit, resistive load, overload and fault ride through. These tests were performed to determine the operational characteristics of the new high temperature superconducting partial core transformer and fault current limiter. The measured results from the tests were compared with the calculated results. The fault ride through test results were then compared to a 15 kVA high temperature superconducting partial core transformer that was designed and built at the University of Canterbury. Since the resistive component of the silver matrix in Bi2223 high temperature superconductor plays a very little role in controlling the fault current, the current limited by the leakage reactance is compared between the two devices. The high temperature superconducting partial core transformer and fault current limiter was found to be 99.1% efficient at rated power with 5.7% regulation and fault current limiting ability of 500 % over the 15 kVA high temperature superconductor partial core transformer from University of Canterbury.
|
2 |
Dielectric characteristics of HTS cables based on partial discharge measurementHayakawa, N., Nagino, M., Kojima, H., Goto, M., Takahashi, T., Yasuda, K., Okubo, H. 06 1900 (has links)
No description available.
|
3 |
Design methodologies for advanced flywheel energy storageHearn, Clay Stephen 04 February 2014 (has links)
Higher penetration of volatile renewable sources and increasing load demand are putting a strain on the current utility grid structure. Energy storage solutions are required to maintain grid stability and are vital components to future smart grid designs. Flywheel energy storage can be a strong part of the solution due to high cycle life capabilities and flexible design configurations that balance power and energy capacity. This dissertation focuses on developing design methodologies for advanced flywheel energy storage, with an emphasis on sizing flywheel energy storage and developing lumped parameter modeling techniques for low loss, high temperature superconducting.
The first contribution of this dissertation presents a method for using an optimal control law to size flywheel energy storage and develops a design space for potential power and energy storage combinations. This method is a data driven technique, that utilizes power consumption and renewable generation data from a particular location where the storage may be placed. The model for this sizing technique includes the spinning losses, that are unique to flywheel energy storage systems and have limited this technology to short term storage applications, such as frequency and voltage regulation.
For longer term storage solutions, the spinning losses for flywheels must be significantly reduced. One potential solution is to use high temperature superconducting bearings, that work by the stable levitation of permanent magnet materials over bulk superconductors. These advanced bearing systems can reduce losses to less than 0.1% stored energy per hour. In order to integrate high temperature superconducting bearings into flywheel system designs, accurate and reduced order models are needed, that include the losses and emulate the hysteretic, non-linear behavior of superconducting levitation. The next two contributions of this dissertation present a lumped parameter axissymmetric model and a 3-D lumped parameter transverse model, which can be used to evaluate bearing lifting capabilities and transverse stiffness for flywheel rotor designs. These models greatly reduce computational time, and were validated against high level finite element analysis, and dynamic experimental tests. The validation experiments are described in detail. / text
|
4 |
An investigation into high temperature superconducting flux pump technology with the circular type magnetic flux pump devices and YBaCuO filmsWang, Wei January 2014 (has links)
The rapid development of second generation (2G) high temperature superconducting (HTS) wires in the last decade has made it possible to wind high quality 2G HTS coils. These 2G HTS coils show promise for future applications such as magnetic resonance imaging (MRI) magnets, electrical machines, magnetic levitation trains, energy storage, etc. 2G HTS coils can be operated using either dc current or ac current. Several important issues have yet to be resolved, such as how to properly magnetise an HTS coil under dc conditions, or how to minimise losses under ac conditions. These problems should be carefully studied before the 2G HTS coils can be widely applied in scientific and industrial applications. This thesis focuses on emerging HTS flux pump technology for HTS coils operating in a dc environment. HTS flux pump technology applies a travelling magnetic wave to fully magnetise an HTS coil, which is both efficient and economical, and has in recent years been proven feasible. However, the underlying physics of this technology are so far poorly understood. In order to study the influence of a travelling magnetic wave on HTS films such as YBa2Cu3O7-δ, two types of circular-type magnetic flux pump (CTMFP) devices were proposed and built. These novel devices generate an annular-shape travelling magnetic wave. The first type was the original CTMFP magnet, which produces the longest wavelength of travelling wave. The second type was the updated CTMFP magnet, which can produce a shorter wavelength of travelling wave (1/2 of the original CTMFP magnet in the six phase connection and 1/4 in the three phase connection). A 2 inch diameter round shape YBCO thin film (200 nm thick of the YBCO layer) and a 46 mm× 46 mm square shape YBCO tape (1.0 µm thick of the YBCO layer, with a hole of Φ26 mm in the centre) were tested. When using a round shape YBCO thin film and the original CTMFP magnet, it was found that the travelling wave tends to decrease the existing critical magnetic gradient inside the YBCO film. The experiment was repeated under different conditions, such as zero-field cooling (ZFC), field cooling (FC), delta-shape trapped field, etc. A simulation based on the H-formulation using FEM software revealed that, after application of the travelling wave, the current density distribution inside the round shape YBCO sample was disturbed, becoming much lower than its critical current density JC. This discovery is interesting because the Bean model suggests that the current density inside a type-II superconductor should be equal to either +JC or - JC (the critical state model). It was found that a round shape YBCO sample follows the Bean model prediction for the homogeneous oscillating field (homogeneous in space), which suggests that the travelling wave is more efficient for transporting the magnetic flux inside YBCO film, compared to a homogeneous oscillating field. An updated CTMFP magnet was designed and built to investigate the influence of the degree of field inhomogeneity on the change of an existing critical magnetic gradient. The results were compared between the six phase connection (1/2 wavelength of the original CTMFP magnet) and the three phase connection (1/4 wavelength of the original CTMFP magnet). It was found that with a travelling wave of consistent amplitude, by shortening the wavelength, the change of magnetic gradient is made stronger. The result supports the assumption that the field inhomogeneity in space may have an important influence on the magnetisation of a YBCO sample. Additionally, in the case of a three phase connection (1/4 wavelength), by reversing the direction of the travelling wave, a different magnetisation profile was obtained, which suggests that the experiment may have detected a macroscopic “magnetic coupling” phenomenon. However, this result needs further study before it can be confirmed. The square shape YBCO sample was tested by applying a travelling wave in a dc background field under FC conditions. The square shape YBCO sample has a centre hole (Φ26 mm), which is closest to the condition of an HTS coil (single layer instead of multi-layer). However, in the experiment there was no clear change of magnetic flux inside the superconducting loop after application of the travelling wave. This might be attributed to the fact that, the field inhomogeneity is not strong enough to cause flux migration in the experiments, and the YBCO layer is relatively thicker which increases the difficulties. Moreover, the width of the superconducting region is relatively small (10 mm), in order to help magnetic flux migrate into the superconducting loop, the field inhomogeneity must be strong enough in the superconducting region, which increases the technical difficulties. However, this might be able to be accomplished by increase the amplitude of the travelling waves. Some experiments will be carried out in the future. The experimental findings in this thesis can not only aid in understanding the mechanism of HTS flux pump technology for an HTS coil, but also can help in understanding ac loss from a coil exposed to a travelling wave. As was suggested by the experimental results, the magnetisation of the YBCO film due to the travelling wave is very different from the magnetisation induced by a homogeneous oscillating field. Under operational conditions, such as inside an HTS motor, the HTS coils experience a travelling wave rather than a homogeneous oscillating field. This thesis discusses the difference in resultant ac loss from a travelling wave and a homogeneous oscillating field of the same amplitude. It was found that, for the round shape YBCO sample, the ac loss from a travelling wave is about 1/3 of the loss from a homogeneous oscillating field. The regions in which the ac loss occurred are also different between a travelling wave and a homogeneous oscillating field. These results suggest that the travelling wave cannot be equated to a homogeneous oscillating field when calculating ac loss. In conclusion, this thesis studies two novel experimental devices, built to study the magnetisation of YBCO films under the influence of a travelling wave. Several novel electromagnetic behaviours were observed in the YBCO films under the influence of a travelling wave, which may help improve understanding of HTS flux pump technology for an HTS coil, and the ac loss induced by a travelling wave.
|
5 |
Study on High Temperature Superconducting Coil System for Magneto Plasma Sail Spacecraft / 磁気プラズマセイル宇宙機搭載用高温超伝導コイルシステムに関する研究Yoh, Nagasaki 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19310号 / 工博第4107号 / 新制||工||1633(附属図書館) / 32312 / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 山川 宏, 教授 松尾 哲司, 准教授 中村 武恒 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
6 |
An experimental investigation of high temperature superconducting microstrip antennas at K- and Ka-band frequenciesRichard, Mark Adrian January 1993 (has links)
No description available.
|
7 |
Conditions of Protection Against Quench and Thermal Runaway of Conduction-Cooled High Temperature Superconducting Magnets / 伝導冷却高温超伝導マグネットのクエンチおよび熱暴走に対する保護可能な条件についての研究LUO, XIJIE 23 March 2022 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(工学) / 甲第23903号 / 工博第4990号 / 新制||工||1779(附属図書館) / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 雨宮 尚之, 准教授 掛谷 一弘, 講師 美舩 健, 教授 松尾 哲司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
8 |
Modélisation, réalisation et caractérisation d'antennes supraconductrices pour la micro-IRM du cerveau de souris à 4,7 T / Modelisation, realisation and caracterisation of superconducting coils for micro-MRI of mouse brain at 4.7 TLambert, Simon 08 April 2011 (has links)
En IRM haute résolution du petit animal, un rapport signal sur bruit (RSB) convenable demande habituellement l'utilisation d'un champ magnétique statique beaucoup plus élevé, (jusqu'à 20 T) que pour les applications cliniques quotidiennes (1,5 et 3 T). Une alternative est offerte avec le développement récent d’antennes miniatures en matériau supraconducteur à haute température critique (HTS). Cependant de nombreux problèmes liés à ce type d'antennes subsistent et limitent leur diffusion à grande échelle. Le présent manuscrit présente le développement théorique et expérimental d'une antenne de surface HTS de très petite dimension destinée à l’imagerie du cerveau de souris in vivo à 4,7 T.La première partie traite de la modélisation électromagnétique 3D, à l’aide d’un logiciel commercial (CST-Microwave Studio), de structures monolithiques auto-résonantes adaptées à l'obtention de facteurs de qualité extrêmement élevés (105). Le modèle numérique permet, par rapport à un modèle analytique approché, une meilleure prise en compte de la complexité géométrique de l’antenne et de son environnement cryogénique proche, dont les effets sur les caractéristiques radiofréquences de l’antenne sont considérables.Une deuxième partie présente l'étude des effets du champ statique (de 0 à 4,7 T) et de la température (de 65 à 83 K) sur les caractéristiques électriques d’une antenne HTS, dans le domaine de fréquences de l'IRM pour lequel les propriétés des supraconducteurs ont été peu étudiées jusqu'ici. L'étude montre que les effets délétères du champ sur la sensibilité de l’antenne sont partiellement compensés par une diminution modérée de sa température de fonctionnement. Cette diminution est accessible avec un dispositif original de contrôle de température qui évite de faire appel à un système cryogénique complexe limitant le domaine d’application des antennes HTS.La troisième partie présente les résultats obtenus en imagerie à 4,7 T avec une antenne de surface en matériau HTS dont la taille (diamètre de 6 mm) a été optimisée pour obtenir les meilleures performances en RSB, en vue d'une intégration dans un réseau de 4 antennes. Un RSB 4,5 fois supérieur à celui obtenu avec une antenne en cuivre de même géométrie a été démontré sur fantôme. Ce travail aboutit à la réalisation de la première image de cerveau de souris in-vivo à une valeur de champ supérieure à 3 T avec une antenne HTS. La mise en réseau d'antennes de ce type devrait permettre de couvrir le cerveau de souris complet en imagerie très haute résolution à 4,7 T, avec un RSB comparable à celui qui est accessible aujourd'hui à la limite supérieure de champ magnétique. / High resolution magnetic resonance imaging (MRI) of small animals requires generally higher static magnetic field (up to 20 T) than those used for clinical applications (1,5 and 3 T) in order to reach a satisfactory signal to noise ratio (SNR). An alternative can be the use of miniature surface coils made of high temperature superconducting (HTS) material. However, several issues remain with such coils and limit their use at a large scale. In this work we present the theoretical and experimental development of a miniature HTS surface coil dedicated to mouse brain imaging at 4.7 T.The first chapter presents 3D electromagnetic simulations to design monolithic self-resonant structures with very high quality factors (≈105) using a commercial software (CST-Microwave Studio). In contrast to an analytical model, a numerical model allows to handle the complex geometry of the coil and its cryogenic environment, which may influence notably the radiofrequency characteristics of the coil.The second chapter presents a study of the coupled effects of the static magnetic field B0 (from 0 to 4,7 T) and temperature (from 66 to 80 K) on the electrical properties of a HTS coil in the frequency range involved in MRI, for which HTS properties have been poorly studied. This study shows that deleterious effects of B0 on coil sensitivity can be partially compensated by a moderate decrease of its working temperature. An original cryogenic system was designed to enable temperature regulation avoiding the use of more complex systems that limit the use of HTS coils for MRI experiments.The third chapter presents MRI results obtained at 4.7 T using a small HTS surface coil. The 6 mm coil has been optimized for best SNR performances and in order to be integrated in a 4-element coil array in a future refinement. A 4.5 fold SNR enhancement as compared to the one achieved using a copper coil with the same geometry was demonstrated. This work provides the first in-vivo imaging of a mouse brain using a HTS coil at a B0 value higher than 3 T. Arrays made of such coils will allow to perform very high resolution imaging of the complete mouse brain at 4.7 T with SNR values that are comparable to those achieved at the highest B0 fields accessible today.
|
Page generated in 0.1043 seconds