• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 16
  • 16
  • 15
  • 10
  • 10
  • 4
  • 2
  • 1
  • Tagged with
  • 223
  • 223
  • 223
  • 43
  • 38
  • 34
  • 34
  • 34
  • 34
  • 33
  • 32
  • 25
  • 24
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Identification and Characterization of Pseudomonas syringae Type Three Effectors that Alter Auxin Responses.

Nievas, Maria Soledad 13 January 2014 (has links)
Plant hormones act in a complex network where their pathways regulate and interact to control different mechanisms, such as development and stress responses. This crosstalk between hormones can be exploited by pathogens to suppress plant defense responses and thereby increase pathogen growth. Pseudomonas syringae pathogenicity is reliant on a Type III secretion system (TTSS) that acts as a specialized injection apparatus to deliver virulence proteins, known as type III effectors (TTEs), into the plant cell cytosol. In my work, I have screened hormone inducible promoter::GUS transgenic Arabidopsis thaliana lines against a P. syringae TTE library in order to identify TTEs involved in the perturbation of hormone signaling in planta. Through this screen I identified two P. syringae TTEs, HopAK1 and HopAL1, both belonging to the same bacterial strain P. syringae pv. maculicola ES4326. I found that HopAK1 can sensitize A. thaliana plants to auxin. On the other hand, HopAL1 activates auxin signaling. Monitoring of auxin signaling was done using transgenic DR5::GUS plants. Both TTEs render the plant susceptible to bacterial infection, highlighting a potential relationship between increased auxin signaling and virulence.
72

Development of a high throughput small molecule screen using Staphylococcus aureus invasion of cells

Kenney, Shelby R. January 2009 (has links)
Staphylococcus aureus is a common and versatile opportunistic pathogen in humans. Increases in the incidence of community acquired and nosocomial infections, coupled with the emergence of antibiotic resistant strains, are causing new treatment challenges for health care professionals. S. aureus readily binds to the endothelial cell surface and utilizes host cell endocytosis to evade host cell immune responses. Inhibition of endocytosis may cause S. aureus to remain unprotected at the host cell surface, allowing host immune systems and other therapeutics more time to clear an infection. Simvastatin inhibits host cell endocytosis. We hypothesize that using simvastatin to inhibit S. aureus invasion of host cells, a high throughput, small molecule screen can be developed. The high throughput screen will evaluate the National Institutes of Health small molecule library for compounds that better inhibit endocytosis. Additionally, 2-dimensional gel electrophoresis will be performed to elucidate the pathway simvastatin alters to inhibit endocytosis. / Department of Biology
73

Biochemical Characterization and Engineering of L-asparaginases for Amino Acid Depletion Therapy of Acute Lymphoblastic Leukemia

Karamitros, Christos S. 18 June 2014 (has links)
No description available.
74

Old targets and new beginnings a multifaceted approach to combating Leishmaniasis, a neglected tropical disease /

Yakovich, Adam J., January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 154-175).
75

Die Alpha-Amylase aus Bacillus amyloliquefaciens Verbesserung der Alkaliaktivität und Steigerung der spezifischen Aktivität mittels gerichteter Evolution /

Bessler, Cornelius. January 2002 (has links)
Stuttgart, Univ., Diss., 2002.
76

Ein GFP-basierter in vivo Assay für das Hochdurchsatz-Screening nach Hydrolaseaktivität

Schuster, Sascha, January 2005 (has links)
Stuttgart, Univ., Diss., 2005.
77

Automated manipulation of zebrafish embryos for high-throughput toxicology screening of nanomaterials /

Mandrell, David. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2011. / Printout. Includes bibliographical references (leaves 58-59). Also available on the World Wide Web.
78

From molybdenum based model catalysts to technically applied systems

Knobl, Stefan. Unknown Date (has links) (PDF)
Freie University, Diss., 2004--Berlin.
79

Fluoreszenzfarbstoffe als Proteinaffinitätssonden und Potentialsonden in HTS-Verfahren

Meyer, Cord. Unknown Date (has links)
Universiẗat, Diss., 2004--Düsseldorf.
80

Directed evolution of amino acid dehydrogenases for biocatalysis of chiral amines

Hours, Raphaelle January 2018 (has links)
By applying the principles of Darwinian natural selection in the laboratory, directed evolution has become a powerful practical approach to study enzymes and optimize them to catalyze industrially relevant transformations. In this thesis, I applied this strategy to the engineering of amino acid dehydrogenases for biocatalysis of chiral amines, focusing on two crucial features for successful directed evolution experiments. A first key aspect is the development of technologies allowing the screening of large libraries of enzyme variants to explore sequence space efficiently. Massive scale-down of assay volumes by compartmentalization of library members in water-in-oil emulsions has recently led to the development of ultrahigh-throughput screening platforms that allow sorting of more than 106 variants per hour. So far, these microfluidic droplet sorters have relied exclusively on fluorescent readouts. To further extend the range of applications toward enzymes for which no fluorescent assays are available, I successfully developed a sorting module based on absorbance detection. Using this new module, microdroplets could be sorted based on an absorbance readout at rates of up to 1 million droplets per hour. To demonstrate the utility of this module for protein engineering, three rounds of directed evolution were performed to improve a poorly stable NAD+ dependent phenylalanine dehydrogenase (PheDH) toward its native substrate. Five hits showed increased activity (improved up to 10-fold in lysate; kcat increased >3.5-fold), soluble protein expression levels (>2.5-fold) and thermostability (Tm, 8 °C higher). To increase the sensitivity of the device (3–4 orders of magnitude lower than fluorescence assays) for detection of enzymes with limited stability and low turnovers, an extra step of growth in droplets from single cell encapsulation, followed by piconinection of substrates and lysis agents was implemented. As a result, a fivefold signal enhancement over background was achieved, for an amine dehydrogenase (AmDH) reaction shown to be undetectable in a droplet single cell assay. Second, I investigated how mutational robustness may correlate with protein stability and lead to successful hits after mutagenesis and screening. To examine this issue, I initially investigated various approaches (including ancestral resurrection and computational design) to identify stabilized PheDH variants. One such variant (dubbed Pross 4) showed increased expression levels (>3.3-fold) and thermostability (Tm, 13 °C higher) compared to the wild-type PheDH. I further compared the mutational tolerance and the hit rate between PheDH and Pross 4 by generating variant libraries focused on key active site residues and screening them for improved AmDH activity. The Pross 4 background generated 6.4 times more active variants than the PheDH background, the best hits displaying increased activity (up to 2.5-fold in lysate; kcat/KM increased up to 8-fold) compared to previously engineered AmDHs with the PheDH scaffold. In conclusion, this work highlights how directed evolution experiments could be designed for increased success rates, by combining reliable high-throughput screens with careful choice of evolutionary robust starting points.

Page generated in 0.4039 seconds