• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics of Concrete Containing Fly Ash With Hg-Adsorbent

Mahoutian, Mehrdad Unknown Date
No description available.
2

Self-compacting Concrete With High Volumes Of Fly Ash

Sahmaran, Mustafa 01 January 2006 (has links) (PDF)
In this investigation, SCCs were prepared by keeping the total mass of cementitious materials (cement and fly ash) constant at 500 kg/m3, in which 30, 40, 50, 60, and 70% of cement, by weight, was replaced by the high-lime and low-lime fly ash. For comparison, a control SCC mixture without any fly ash was also produced. The fresh properties of the SCCs were observed through, slump flow time and diameter, V-funnel flow time, L-box height ratio, U-box height difference, segregation ratio and the rheological parameters (relative yield stress and relative plastic viscosity). Relations between workability and rheological parameters were sought. Setting times and temperature rise of the SCC were also determined. The hardened properties included the compressive strength, split tensile strength, drying shrinkage and permeation properties (absorption, sorptivity and rapid chloride permeability tests) up to 360 days. The results obtained indicated that it is possible to produce SCC with a 70% of cement replacement by both types of fly ash. The use of high volumes of fly ash in SCC not only improved the workability and permeability properties but also made it possible to produce concretes between 33-40 MPa compressive strength at 28 days.
3

Vývoj vysokopevnostních betonů s vysokým obsahem el. popílků / The development of high-strength concrete with a high content of el. fly ash

Roubal, David January 2019 (has links)
This diploma thesis deals with the study of high-strength, high-volume fly ash concrete. The theoretical part of this thesis focuses on the detailed characteristic and main principles of high-strength concrete, high-volume fly ash concrete. In addition, according to the findings, the technology of high-strength and high-volume fly ash concrete, including principles of high strength, has been described. On the basis of the findings, high-strength, high-volume fly ash concrete for specific compressive strengths has been designed and created in the experimental section. These concretes were then subjected to a number of tests.
4

Vývoj betonů s vysokým obsahem popílku a ověření jeho trvanlivosti v různých prostředích / Development of concrete with high fly ash content and verification of durability in various environments

Ambruz, Pavel January 2014 (has links)
This thesis contains two main parts: theoretical and experimental. The theoretical part deals with summarization knowledge of high-volume fly ash (HVFA) concretes. Among others, there are mentioned processes of producing of fly ash, characteristic features and resistance to aggressive environments of HVFA concretes. The theoretical part ends with a suitable example of practical application. In the practical part were tested properties of nine different mixtures containing 40%, 50% and 60% replacement by weight of the cement by fly ash. They were compared with the reference mixtures without fly ash addition. The main endpoints were long-term compressive strength, resistance to aggressive environments, the influence of fly ash on consistency, hydratation temperatures, water absorption and volume changes.

Page generated in 0.0805 seconds