• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • Tagged with
  • 19
  • 19
  • 10
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Amélioration des performances et nouveaux concepts de capteurs inertiels à détection thermique. / Performance improvements and development of a new concept of temperature detection for thermal accelerometers

Mendez Garraud Garraud, Alexandra 08 December 2011 (has links)
Ce travail de thèse porte sur l'étude et la réalisation de micro-capteurs d'accélération à détection thermique. Ils sont basés sur la modification des échanges thermiques par convection naturelle dans un fluide chauffé localement lorsque le dispositif est soumis à une accélération.L'utilisation d'un fluide comme masse sismique est en rupture avec les concepts d'accéléromètres dits traditionnels. Cet avantage a pour conséquence directe leur tenue aux fortes accélérations.Un des objectifs de ce travail consiste à développer et à caractériser des accéléromètres à grande étendue de mesures (> 10 000 g). D'autre part, des études fondamentales menées en parallèle nous ont permis de mieux comprendre les phénomènes thermiques intervenant dans la cavité ainsi que d'en déduire l'effet des paramètres thermo-physiques du fluide, des conditions expérimentales et des dimensions géométriques du capteur sur la sensibilité et la bande passante.Par ailleurs, l'étude de nouveaux concepts de détection thermique basés sur l'utilisation de matériaux pyroélectriques a été entreprise pour aboutir à une amélioration de la sensibilité comme de la bande passante. Après la maîtrise des dépôts en couches minces, ce nouveau mode de détection a été mis en œuvre et le principe validé. / This PhD thesis deals with both study and fabrication of micro-accelerometers based on thermal convection. Under acceleration, convective heat transfer in a locally heated fluid is modified and induces a change in temperature profile. Using a fluid as seismic mass enhances better performances than traditional accelerometers in term of high shock reliability.One goal is to develop and characterize high-g accelerometers (> 10,000 g). Besides, analytical studies carried out in parallel have allowed us to improve our understanding of fluid thermal behaviour. Effects of thermo-physical parameters, experimental set-up and sensor size on both sensitivity and bandwidth were deduced.On the other hand, a new concept of thermal detection based on the use of pyroelectric material was undertaken to improve sensor sensitivity as well as bandwidth. First the thin-film sputtering process is developed. Then the pyroelectric thermal accelerometer principle is confirmed.
12

COMBINING SENSORS WITH AIRBORNE TELEMETRY INSTRUMENTATION TO MAKE RANGE MEASUREMENTS AND OBTAIN AERODYNAMICS

Davis, Bradford S., Brown, T. Gordon 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / Obtaining a projectile’s free-flight motion profile and its aerodynamic coefficients is typically accomplished at indoor test ranges using photographic techniques synchronized to timing stations. Since these ranges are relatively short, many discrete tests are necessary to compile a complete understanding of the projectile’s behavior. When Time Space Position Information (TSPI) is requested over long-range flights, it has been gathered with expensive video, laser, and radar trackers. These can be inaccurate at times and are limited to locations where the range equipment is able to track the projectile’s entire flight. With the ever-increasing sophistication of ordnance, such as smart and competent munitions that have multi-stage thrusting and maneuvering capability, it is becoming increasingly difficult to make the necessary measurements using current measurement techniques. Microelectromechanical Systems (MEMS) sensors and other electro-optical and magnetic sensors referenced to the sun and earth allow the projectile’s angular rates (spin, pitch, and yaw) and accelerations (axial and radial) to be measured throughout the flight. These sensors have been packaged into miniaturized telemetry instrumentation systems and placed within empty voids of the munition or in place of the fuze or warhead section. By combining this sensor data with a 6-DOF trajectory code, many of the projectiles aerodynamic coefficients including drag, static moment, and damping moment over a large Mach Number range and over multiple flight paths have been obtained. These techniques decrease the number of test shots required, reduce the complexity of the test setup, and reduce the test costs. Test data from instrumented tank, artillery, and rocket flight tests are presented in this report to show the current capability of making inflight measurements using telemetry-based techniques.
13

A TELEMETRY TRANSMITTER CHIP SET FOR BALLISTIC APPLICATIONS

Lachapelle, John, McGrath, Finbarr, Osgood, Karina, Egri, Bob, Moysenko, Andy, Henderson, Greg, Burke, Lawrence W., Faust, Jonah N. 10 1900 (has links)
International Telemetering Conference Proceedings / October 25-28, 1999 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The U.S. Army’s Hardened Subminiature Telemetry and Sensor Systems (HSTSS) program has engaged the M/A-COM Corporation to work in the development of a highly accurate, crystal controlled telemetry transmitter chip set to be used in Army and other U.S. military munitions. A critical factor in this work is the operating environment of up to 100,000-g launch accelerations. To support the Army in this project, M/A-COM is developing integrated Voltage Controlled Oscillators (VCO) for L and S band, a silicon synthesizer/phase locked loop (PLL) IC, and a family of power amplifiers. Lastly, the transmitter module will be miniaturized and hardened using M/A-COM’s latest chip-onboard mixed technology manufacturing capabilities. This new chip set will provide the telemetry engineer with unprecedented design flexibility. This paper will review the overall transmitter system design and provide an overview for each functional integrated circuit.
14

OPTIMIZATION OF A MINATURE TRANSMITTER MODULE FOR WIRELESS TELEMETRY APPLICATIONS

Osgood, Karina, Burke, Larry, Webb, Amy, Muir, John, Dearstine, Christina, Quaglietta, Anthony 10 1900 (has links)
International Telemetering Conference Proceedings / October 21, 2002 / Town & Country Hotel and Conference Center, San Diego, California / M/A-COM, Inc. has previously developed a highly integrated transmitter chip set for wireless telemetry applications for the military L and S band frequencies and the commercial 2.4GHz ISM band. The original chip set is comprised of a voltage controlled oscillator (VCO), a silicon phase locked loop (PLL), and a family of power amplifiers (PA's). Using these components, M/A-COM has produced a miniature IRIG-compliant transmitter module, which has been flight-tested by the U.S. Army’s Hardened Subminiature Telemetry and Sensor System (HSTSS) program. Since the initial offering, several product enhancements have been added. The module performance has been improved by tailoring the VCO specifically for direct frequency modulation applications. In addition to improving noise performance, these enhancements have produced improved modulation linearity, decreased lock time and increased carrier stability. Modulation rates in excess of 10Mbps have been demonstrated. High efficiency power amplifiers operating at 3V have also been added to the family of amplifiers (PAE > 50%). This greatly enhanced efficiency allows higher RF power output while maintaining the same miniature form factor for the transmitter. Further, M/A-COM has added a silicon-on-sapphire PLL to the chip set, which operates at frequencies up to 3.0GHz. This paper details the enhancements to the components within the chip set, and the improvement in performance of the transmitter module. Test data is presented for the transmitter modules and individual components.
15

High Dynamic Range CMOS-MEMS Capacitive Accelerometer Array with Drift Compensation

Guney, Metin G. 01 May 2018 (has links)
This thesis explains the design, fabrication and characterization steps of a high dynamic range CMOS-MEMS capacitive accelerometer array and on-chip environmental sensors for bias drift compensation. Inertial navigation under harsh environments requires a high dynamic range accelerometer that can survive and provide continuous readout accuracy through shock events, while having a large dynamic range to capture fine-scale motions. The dynamic range target is set as 156 dB in accordance with navigation standard macro-electromechanical accelerometers, which corresponds to around 1 mG acceleration resolution in 50 kG input range. The small accelerometer cell design ensures shock survivability (e.g. up to 50 kG) by keeping the stress at the anchors below the fracture strength of thin-film oxide. Arraying multiple accelerometer cells in parallel lowers the fundamental thermomechanical noise limit set by the small mass of the individual accelerometer cells. Resonance frequency staggering between accelerometer cells suppresses ring-down oscillations. Parasitic capacitance of the high-impedance transduction signal is important to mitigate; undercut of the underlying silicon substrate and an aluminum etch of the top metal layer, incorporated in the CMOS-MEMS process flow, reduces the parasitic capacitance and improves sensitivity. PTAT temperature sensors, piezoresistive stress sensors and resonator-oscillators integrated across the accelerometer chip provide high-resolution environmental measurements for the compensation of long-term bias and scale factor drift. Simultaneous measurements from the accelerometer and environmental sensors demonstrate the correlation between environmental variations and long-term drift. Finite-element analysis shows that the scale factor stability of the accelerometer can be improved up to 1 ppm given the sensor array’s measurement resolution. The CMOS-MEMS accelerometer system-on-chip is fabricated in a TowerJazz 0.18 μm CMOS process. The post-CMOS MEMS processing steps are tuned to reduce the top metal milling and sidewall polymer deposition. A reactive ion etch recipe is developed for the removal of the top metal in order to reduce the parasitic capacitance and eliminate the risk of metal creep at spring beam anchors, thereby improve the bias stability. The PTAT temperature sensors have 3.1 mV/K measured sensitivity and 7.1 mK resolution with high repeatability. The compensation of the accelerometer readout for temperature variations down to 7.1 mK translates to 2.6 ppm scale factor stability for the accelerometer. The characterization of the stress sensors through the application of normal stress on the device package leads to an uncertainty in the amount of stress transferred to the stress sensors on the chip surface. The maximum measured stress sensitivity is 36.5 pV/Pa, which leads to 24.7 kPa stress resolution and translates to 1.7 ppm scale factor stability for the accelerometer without taking the stress attenuation into account. The measured sensitivity sets a lower bound on the sensitivity of the stress sensors implying that the stress resolution and the corresponding accelerometer scale factor stability is higher in practice. The measured frequency stability of the resonator-oscillator is 0.4 ppm, thereby the resonance frequency based variations of the accelerometer readout can be compensated to reach up to 0.8 ppm scale factor stability. However, the initial drift in the resonance frequency of the oscillators due to dielectric charging requires a long wait-time before these sensors can be used for accelerometer drift compensation. The accelerometer array is demonstrated to have 23.7 mG/√Hz noise floor and 70 mG bias stability. The maximum input acceleration applied on the device is limited to 4 kG by the split Hopkinson bar test setup. Improvement of the setup to transfer acceleration amplitudes up to 50 kG should validate the designed input range of the accelerometer array and lead to 117 dB dynamic range for the current design. The measurement bandwidth is fundamentally set by the 126 kHz resonance frequency of the accelerometer cells and can be further limited by filtering the readout signal to attenuate the transient oscillations faster. The nonlinearity of the accelerometer response is better than 1.2% in ±10 kG input range; however, it gets up to 19.0% in ±50 kG maximum input range. The long term bias drift of the accelerometer is shown to be correlated with the temperature and stress variations. Compensation of the accelerometer readout based on the stress and temperature sensor measurements leads to an observable improvement in the long term drift. However, the bias stability of the accelerometer is limited by excessive flicker noise in the system, which is believed to result from noise folding from higher frequencies. Suppression of the flicker noise in the system should allow for a more detailed study of the effect of environmental variations on the accelerometer readout and evaluation of more elaborate fitting algorithms for model based prediction and compensation of the bias drift to reach the target bias stability and dynamic range.
16

Analysis Of High-g Camera Support Structure For Crash Test System

Erdogdu, Mahmut Gokhan 01 December 2009 (has links) (PDF)
Sled Crash Test System is one of the key elements in todays high safety vehicle designs. In the crash test systems, high speed imaging by high speed cameras is required. For the success of high speed imaging, high speed cameras should be well secured on the sled of the system which is being accelerated to high-g values to simulate vehicle crash. In this study, structural analysis of the high &ndash / g camera support structure for the sled crash test sytem which is available in METU-BiLTiR Center Vehicle Safety Unit is carried out. For the secure connection of the high speed cameras, three different configurations of the camera support structure with different camera positions are analyzed by transient dynamic analysis. The finite element simulations are carried out under the acceleration of 90 g which is the maximum applicable acceleration on the system. After verification of the configurations with the computer simulations, one of the configuration has been tested at the sled test facility of METU-BILTIR Center Vehicle Safety Unit.
17

Effect of Rayleigh-Taylor Instability on Fuel Consumption Rate: A Numerical Investigation

Long, Brandon Scott 24 August 2017 (has links)
No description available.
18

Amélioration des performances et nouveau concept de détecteurs de capteurs inertiels à détection thermique

Garraud, Alexandra 08 December 2011 (has links) (PDF)
Ce travail de thèse porte sur l'étude et la réalisation de micro-capteurs d'accélération à détection thermique. Ils sont basés sur la modification des échanges thermiques par convection naturelle dans un fluide chauffé localement lorsque le dispositif est soumis à une accélération. L'utilisation d'un fluide comme masse sismique est en rupture avec les concepts d'accéléromètres dits traditionnels. Cet avantage a pour conséquence directe leur tenue aux fortes accélérations. Un des objectifs de ce travail consiste à développer et à caractériser des accéléromètres à grande étendue de mesures (> 10 000 g). D'autre part, des études fondamentales menées en parallèle nous ont permis de mieux comprendre les phénomènes thermiques intervenant dans la cavité ainsi que d'en déduire l'effet des paramètres thermo-physiques du fluide, des conditions expérimentales et des dimensions géométriques du capteur sur la sensibilité et la bande passante. Par ailleurs, l'étude de nouveaux concepts de détection thermique basés sur l'utilisation de matériaux pyroélectriques a été entreprise pour aboutir à une amélioration de la sensibilité comme de la bande passante. Après la maîtrise des dépôts en couches minces, ce nouveau mode de détection a été mis en oeuvre et le principe validé.
19

DEVELOPMENT OF AN ADVANCED GENETIC TOOLBOX TO ENABLE GENOME SCALE ENGINEERING IN SINORHIZOBIUM MELILOTI

MacLeod, Michael R. January 2018 (has links)
Synthetic biology has ushered in a new age of molecular biology with the aim towards practical developments in disciplines ranging from medicine, agriculture, and industry. Presently, it remains difficult to manipulate the genomes of many organisms due to lack of genetic tools. These problems can be circumvented by cloning large fragments of DNA into strains where many genetic tools are in place, such as Saccharomyces cerevisiae. However, this organism is unable to directly transfer cloned DNA to other organisms and is unable to stably maintain DNA with a G+C content >40%. Many organisms relevant in biotechnology often have G+C content DNA >60%, and therefore are difficult to engineer. Here, the soil bacteria Sinorhizobium meliloti was chosen as a host strain to clone and manipulate large fragments of high G+C content DNA. S. meliloti is a Gram-negativeα-proteobacteria that forms symbiotic relationships with legumes to fix nitrogen. It has a multi-partite genome with a G+C content of 62.7% that includes a chromosome (3.65 Mb), the pSymA (1.35 Mb), and pSymB (1.68 Mb) replicons. A restriction endonuclease hsdR mutant strain lacking pSymA and pSymB was created and used in this study. Multi-host shuttle (MHS) vectors were constructed that allow for direct transfer and maintenance of DNA in E. coli, S. cerevisiae, and P. tricornutum. Characterization of strains was conducted to determine transduction, conjugation, and transformation frequencies, as well as stability of MHS plasmids. Furthermore, a proof-of-concept experiment was conducted to clone large plasmids (70-205 kb) with G+C content >58% via site-specific recombination at a landing pad in the MHS vector, which was then verified using colony PCR. This work demonstrates the usefulness of S. meliloti containing a MHS vector for cloning of large fragments with high G+C content DNA, a technology that may be used for several applications in both applied and basic research. / Thesis / Master of Science (MSc) / Synthetic biology is an emerging field that incorporates principles of molecular biology and engineering for the design and construction of biological systems for application in medicine, agriculture, and industry. Presently, it remains difficult to modify genomes of several organisms due to lack of available techniques. Yeast is currently used for the modification of large DNA pieces, however it is unable to transfer and maintain modified DNA with high G+C content. Here, the bacteria Sinorhizobium meliloti was used as a host organism to conduct genetic engineering due to its ability to maintain large DNA pieces with a high G+C content. Characterization experiments were conducted to assess the efficiency of this organism for this task. Using this strain, a proof-of-concept experiment to demonstrate the uptake and maintenance of large, high G+C DNA pieces was completed. This technology may be useful in biotechnology applications for engineering of large DNA pieces from industrially relevant organisms.

Page generated in 0.0443 seconds