Spelling suggestions: "subject:"highrate"" "subject:"highurate""
21 |
Modelling of Sulphate Reduction in Anaerobic Wastewater Treatment SystemsHaris, Abdul Unknown Date (has links)
Municipal wastewater and industrial wastewaters like those effluents from brewery, citric acid production, tannery, pulp and paper industry, and mussel processing contain sulphate ranging from 20 mg.L-1 to 11400 mg.L-1. When these wastewaters are treated in an anaerobic system like prefermentors or anaerobic digesters the sulphate is reduced to sulphide by sulphate reducing bacteria (SRB). The presence of sulphate reduction is not desirable as it may reduce methane yield due to partial substrate utilisation by SRB, causes system toxicity and the production of malodor H2S in the gas phase. In this thesis, the effects of operational conditions on sulphate transformation and assimilation was studied in a laboratory scale anaerobic wastewater treatment system. The laboratory scale system consisted of two reactors the first one a well-mixed fermentor (referred to as an acidogenic reactor) and the second an expanded granular sludge blanket reactor (referred to as a methanogenic reactor) with pH and temperature control. Two sets of studies were performed; in the first set both reactors were connected serially to represent a two-stage high-rate anaerobic treatment system. The system was fed molasses and operated at temperature of 35oC. The acidogenic reactor was controlled at pH of 6 while the methanogenic reactor was controlled at pH of 7.2 by automatic addition of caustic. In the second set of experiments only the first reactor was used to represent a prefermentor and the first stage of the two stage. The reactor was fed with glucose at various concentrations, operated at pH of 6 and temperature of 35oC. Information gained from these studies was encapsulated in a mathematical model to describe sulphate reduction in anaerobic treatment systems. This model was also validated using data generated from the experiments. The experimental study showed that · At low sulphate concentrations of about 250 mg.L-1 and COD concentration of 10,000 mg.L-1 in feed, relatively high percentage (up to 35 %) of produced sulphide was assimilated by biomass, while the rest of the sulphur was distributed as unconverted sulphate, dissolved sulphide, H2S gas and to a lesser extent as metallic sulphide precipitates. · The major electron donor for sulphate reduction in both the acidogenic and the methanogenic reactor was hydrogen gas. Therefore, sulphate reduction not only competed with hydrogen utilising methanogens for the available hydrogen, but also changed the distributions of organic acids, which were directly or indirectly influenced by the H2 partial pressure. · Sulphide concentrations of up to 6.5 mM free hydrogen sulphide) at pH of 7.2 was not inhibitory to methanogens · Sulphate reducing bacteria were able to grow even at a low hydraulic retention time of 1.2 hours in the well-mixed acidogenic reactor. It was estimated that the maximum specific growth rate (m) and half saturation constant (ks) of SRB was 1.31 h-1 and 3.8 mg S.L-1, respectively. These values were higher than those reported in literature. · Sulphate reduction was suppressed at high concentration of carbon in the feed. Accumulation of high concentration of volatile organic acids at high feed-carbon concentrations had little effect on sulphate reduction. However, extent of sulphate reduction had a negative correlation with total concentration of biomass. A non-competitive biomass inhibition function was proposed to model the correlation. From this fit it was estimated that a biomass concentration of about 3300 mg-COD.L-1 will completely inhibit sulphate reduction. · Sulphate reduction was affected by redox potential control and pH in the acidogenic reactor. High pH and low redox potential values were essential for sulphate reduction to proceed. At redox potential control of -300 mV, sulphate reduction was inhibited more at pH of 6 than it was at pH of 7. At redox potential values of -250 mV or higher, about 90 % inhibition of sulphate reduction was observed at both pH of 6 and 7. An existing model describing carbohydrate degradation was extended to include sulphate reduction processes. Despite experimentally observing that sulphate reduction only took place from hydrogen, all possible substrates for sulphate reducion was considered. These included: lactic acid, butyric acid, propionic acid, acetic acid and hydrogen. Kinetic parameters for sulphate reduction processes were obtained from documented literature. Inhibition of sulphate reduction by biomass and sulphur assimilation by biomass were included in the model. A new approach to calculate caustic consumption at given pH values was also included. A modification to hydrogen regulation function was also made to better predict product distributions as a function of gas-phase hydrogen concentration. Model validation was performed using data from dynamic experiments. Comparison to actual data was undertaken on several key variables in the acidogenic and methanogenic reactors such as: organic acid concentrations, gas compositions, gas production rates, sulphate and sulphide concentrations and caustic consumption rates. The model satisfactorily predicted sulphate and sulphide concentrations in both reactors. However, discrepancy between predicted and experimental data on organic carbon concentrations was seen, especially during organic carbon concentration step changes.
|
22 |
Poka-Yoke Model for Controlling Unit Entering and Fall Reduction in the Transportation of ToiletsRoca-Ramos, Luis, Vargas-Zamalloa, Piero, Carvallo-Munar, Edgardo, Salas-Castro, Rosa, Cardenas-Rengifo, Luis 01 January 2021 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / Small and medium toilet manufacturing businesses in Peru face significant problems such as low productivity because of a high rate of production losses. To address this issue, the present study proposes the application of a lean manufacturing technique, such as the Poka-Yoke model, which improves the production flow within the company by implementing a transportation cart with a safety system to help reduce material falls during the manufacturing process. The results showed a 24% increase in productivity and reduction in problems of damaged products that did not meet quality standards, thus preventing their subsequent reprocessing. / Revisión por pares
|
23 |
Water and Nutrient Recycling in High Rate Algae Ponds Fed in Primary Treated Municipal WastewaterChang, Michael Field 01 June 2014 (has links)
Algal biofuels present a promising future alternative to petroleum based fuels. Water nutrient recycling is a key step to increase the sustainability of algae biofuel production facilities. This thesis discusses the process of nutrient and water recycling in high rate algae raceway ponds (HRAP) fed primary treated municipal wastewater. Research was conducted primarily at the San Luis Obispo Water Resource Reclamation Facility (SLOWRRF). Nine 30 m2, 0.3 m deep HRAP’s were operated continuously from June 1, 2013 to April 17, 2014. The ponds were arranged in three sets of triplicate ponds, with two pond sets run on 3-day hydraulic residence time (HRT), and the third on a 2-day HRT. The biomass productivity of the 2-day HRT and 3-day HRT were compared. The two sets of 3-day HRT ponds were run in series to determine the effect on productivity associated with recycling growth media without supplemental nutrient addition. The first pond in series was referred to as round 1 and the second as round 2. Due to solids accumulation in the 2-day HRT ponds in summer proper biomass productivity values could not be determined. 4-inch standpipes were determined to cause the solids accumulation when large flocs were present in ponds. As a possible solution to the solids accumulation issue, a ramped standpipe was designed and installed in one pond per triplicate set. In winter the 2-day HRT pond was roughly 37% more productive than the 3-day HRT. In summer the round 1 (3-day HRT) ponds were roughly 33% more productive than the round 2 (3-day HRT) ponds. In winter the round 1 (3-day HRT) ponds were roughly 19% more productive than the round 2 (3-day HRT) ponds. The type of standpipe (ramped or 4-inch) did not cause a significant amount of solids accumulation in either of the 3-day HRT ponds. The type of standpipe did make a difference in the 2-day HRT ponds. On average the 4-inch standpipe pond had 35% higher TSS than the ramped standpipe ponds. In addition to these field experiments, laboratory aerobic degradation experiments were conducted to determine the nutrient release of previously digested sludge in aerobic ponds. Pretreatment of algae sludge did not have a significant effect on nutrient release of previously anaerobically digested algae sludge in aerobic conditions. The maximum soluble nitrogen generated in the aeration reactors was between 56% for the treated sludge, and 66% for the untreated sludge.
|
24 |
Interrupted High-Rate Compression of Porcine Brain Tissue Utilizing the Split Hopkinson Pressure Bar MethodJohnson, Haden Andrew 11 August 2017 (has links)
Traumatic brain injury (TBI) is a growing concern among American citizens and globally. This study proposes the use of a novel mechanical testing method for interrupting adult porcine brain tissue while under varying levels of high rate compressive strain to better understand the mechanical response of brain while under TBI inducing conditions. Testing was performed using a polymeric Split Hopkinson Pressure Bar (SHPB) along with customized attachments developed in-house to interrupt tissue samples at strain levels of 15%, 30%, and 40% while being compressed at strain rates of 650, 800, and 900 s-1. Following interruption, the samples were chemically fixed in preparation for histological processing. Microscopy techniques were used to examine the microstructure of the deformed tissue samples and measure the area fraction of their neural constituents. The combination of both the mechanical and microstructural responses of the brain tissue allowed for the development of a structure-property relationship.
|
25 |
Bioflocculation of Wastewater Treatment Pond Suspended SolidsLefebvre, Louis 01 December 2012 (has links) (PDF)
Bioflocculation of Wastewater Treatment Pond Suspended Solids
Louis Lefebvre
Wastewater treatment lagoons and high rate algae ponds (HRAPs) can provide cost effective wastewater treatment, but they commonly have high effluent concentrations of total suspended solids (TSS). In this thesis algae pond effluent was treated in a beaker testing apparatus (mixed and aerated) with various mixtures of activated sludge and primary effluent simulating differing activated sludge aeration basin compositions then was allowed to settle to assess settleability. Conventionally, microalgal suspended solids are removed by chemical coagulation followed by separation methods that often have a high cost relative to the low cost lagoon or HRAP system where the solids were produced. This separation step is often cost prohibitive or operationally complex for municipalities or too energy intensive for application in algae biofuels production. This research investigates using a small amount of activated sludge material to promote bioflocculation of algae in pond effluent. It was hoped that the findings may demonstrate a path for municipalities to keep their lagoons, while increasing capacity and improving treatment without excessive cost or complexity. Experiments were conducted on microalgae samples from a pilot-scale HRAP and activated sludge and primary effluent samples from a local municipal wastewater plant. The samples were placed in a mixing apparatus and allowed to settle for a given period of time, after which TSS was analyzed for settleability. The experiments investigated the effect of various lab-scale activated sludge reactor operational schemes by varying the volumes (and masses) of activated sludge, algae-rich water, and activated sludge in the beaker. Results in the sorption test (tests with only activated sludge and algae-rich water) demonstrated algae pond effluent treated with activated sludge concentrations of 3000 mg/L or greater produced final effluent TSS concentrations near discharge requirements (40-50 mg/L) with only 30 minutes of settling and without addition of primary effluent. However, such high activated sludge concentrations are not feasible at full scale. Furthermore, beakers with activated sludge concentrations greater than 3000 mg/L reduced TSS concentrations by more than 150 mg/L with only 30 minutes of settling and without addition of primary effluent. Results in the aerobic beaker tests (tests with primary effluent, activated sludge, and algae-rich water) showed greater than 200 mg/L TSS removal and final effluent TSS concentration less than 30 mg/L was achieved using activated sludge to primary effluent volumetric ratios of 1:1 and greater which corresponded to activated sludge concentrations of 730 mg/L and greater. Activated sludge concentrations of 730 mg/L may not be feasible at full scale. This report shows that a PETRO-like process is effective in lowering wastewater pond suspended solids, however not to typical discharge standards.
|
26 |
Mathematical Modeling of Carbon Removal in the A-Stage Activated Sludge SystemNogaj, Thomas 01 January 2015 (has links)
This research developed a dynamic activated sludge model (ASM) to better describe the overall removal of organic substrate, quantified as chemical oxygen demand (COD), from A-stage high rate activated sludge (HRAS) systems. This dynamic computer model is based on a modified ASM1 (Henze et al., 2000) model. It was determined early in the project that influent soluble COD, which is normally represented by a single state variable in ASM1, had to be subdivided into two state variables (SBs and SBf, or slow and fast fractions) to simulate the performance of A-stage systems. Also, the addition of state variables differentiating colloidal COD from suspended COD was necessary due to short hydraulic residence times in A-stage systems which do not allow for complete enmeshment and bioflocculation of these particles as occurs in conventional activated sludge systems (which have longer solid retention times and hydraulic retention times). It was necessary to add several processes (both stoichiometry and kinetic equations) to the original ASM1 model including heterotrophic growth on both soluble substrate fractions and bioflocculation of colloidal solids. How to properly quantify heterotrophic growth on SBs and SBf resulted in two separate approaches with respect to process kinetic equations. In one approach the SBf was metabolized preferentially over SBs which was only utilized when SBf was not available. This is referred to as the Diauxic Model. In the other approach SBf and SBs were metabolized simultaneously, and this is referred to as the Dual Substrate Model. The Dual Substrate Model calibrated slightly better than the Diauxic Model for one of the two available pilot studies data sets (the other set was used for model verification). The Dual Substrate A-stage model was used to describe the effects of varying specific operating parameters including solids retention time (SRT), dissolved oxygen (DO), influent COD and temperature on the effluent COD:N ratio. The effluent COD:N ratio target was based on its suitability for a downstream nitrite shunt (i.e. nitritation/denitritation) process. In the downstream process the goal is to eliminate nitrite oxidizing bacteria (NOB) from the reactor while selecting for ammonia oxidizing bacteria (AOB). The results showed that a low SRT (< 0.25 d) can produce high effluent substrates (SB and CB), and elevated COD:N ratios consistent with NOB out-selection downstream, the HRAS model was able to predict the measured higher fraction of CB in the A-stage effluent at lower SRTs and DO concentrations, and to achieve the benefits of operating an A-stage process, while maintaining an effluent COD:N ratio suitable for a downstream nitritation/denitritation process, an A-stage SRT in the range of 0.1 to 0.25 d should be maintained. This research also included an analysis of A-stage pilot data using stoichiometry to determine the bio-products formed from soluble substrate removed in an A-stage reactor. The results were used to further refine the process components and stoichiometric parameters to be used in the A-stage dynamic computer model, which includes process mechanisms for flocculation and enmeshment of particulate and colloidal substrate, hydrolysis, production of extracellular polymeric substances (EPS) and storage of soluble biodegradable substrate. Analysis of pilot data and simulations with the dynamic computer model implied (indirectly) that storage products were probably significant in A-stage COD removal.
|
27 |
Nutrient Removal Using Microalgae in Wastewater-Fed High Rate PondsRodrigues, Matthew N 01 June 2013 (has links) (PDF)
This thesis discusses the mechanisms associated with the removal of organic matter, nitrogen and phosphorus in wastewater-fed high rate algae ponds (HRAP) designed to operate as triplicates. Research was conducted at the San Luis Obispo Water Reclamation Facility (SLOWRF) as a pilot-scale study of nine 30-square meter ponds one foot in depth. During period of study, triplicates were operated at hydraulic retention times (HRT) of 4, 3 or 2-days. Main objectives for the study were to determine minimum HRTs required to achieve secondary and tertiary treatment. Experimental conditions such as CO2 supplementation, nighttime aeration and operation of ponds in series were employed to evaluate optimal conditions for efficient nutrient removal. Ponds were continuously fed primary effluent with the following water quality characteristics: 5-day total biochemical oxygen demand (TBOD5) of 124mg/L, 5-day soluble carbonaceous biochemical oxygen demand of 67mg/L (scBOD5), total suspended solids (TSS) of 66mg/L, volatile suspended solids (VSS) of 65mg/L, total ammonia nitrogen (TAN) of 34mg/L-N, oxidized nitrogen of 1.1mg/L-N, total K̇jeldahl nitrogen (TKN) of 42mg/L-N and dissolved reactive phosphorus (DRP) of 3.3mg/L-P. Nutrient removal efficiencies were compared between summer months (April – October) and winter months (November – February). Average pond temperatures during summer and winter were 20.4 °C and 14.9 °C, respectively. Average TAN removal efficiencies of 2-day HRT ponds ranged from 62% in winter to 78% in summer. Operation of ponds at an increased 3-day HRTs resulted in corresponding seasonal increases of TAN removal by 14% and 12%. In 4-day HRT ponds operating in series after a 3-day HRT set, TAN removal efficiency was 98% in winter and 99% in summer. Aeration increased nitrification and nitrate concentrations in 2-day HRT ponds to10mg/L-N ± 4.4mg/L-N. DRP concentrations and BOD removal efficiencies within replicate ponds were similar throughout seasonality. DRP was 1.2mg/L-P ± 0.66mg/L-P at a 4-day HRT operating in series, 2.2mg/L-P ± 0.57mg/L-P at a 3-day HRT and 2.6mg/L-P ± 0.58mg/L-P at a 2-day HRT. Aeration had no measureable effect on BOD removal. BOD removal efficiency was 97% at a 4-day HRT in series with a 3-day HRT and 95% at 3-day and 2-day HRTs.
|
28 |
Modeling frameworks to evaluate energy autarky of wastewater treatment systemsSarpong, Gideon 01 May 2020 (has links)
This research demonstrates the use of two novel methodologies to evaluate energy autarky status of wastewater treatment plants (WWTPs) in two steps. Step I (analysis 1 and 2) focuses on overall energy performance evaluation of a conventional activated sludge process (CAS) using a quantitative mass balance model. Step II involves development of a dynamic model that simulates a future wastewater resource recovery facility (WRRF). The step I (analysis 1) focused on small WWTPs with treatment capacities less than 5 MGD. The results revealed that a CAS process can achieve energy autarky or energy-positive status when old technology equipment is replaced with new, high efficiency equipment to save 10-12% energy; aeration energy is reduced by installing nitritation/anammox nitrogen removal process; and energy production is enhanced with the addition of FOG for co-digestion. Analysis 2 of step I focusing on large plant capacities (i.e., > 20 MGD) evaluated the effect of influent wastewater strength (IWWS), primary treatment COD removal efficiency (PT-COD), and proper design of combined heat and power (CHP) systems on the overall energy performance. The results showed that energy autarky is feasible when PT-COD is 60% for low IWWS, 40% or greater for medium IWWS, and 30% or greater for high IWWS. In step II analysis, a new and dynamic model was developed by integrating high rate algal pond (HRAP) and anaerobic digester (AD) systems. The model was calibrated using the experimental data from recent studies. The results showed that this system can achieve energy autarky when advanced solids separation and co-digestion systems are included. Solids separation efficiency was increased from 75 to 90% to reduce the winter effluent COD concentrations from HRAP (by 20%). Similarly, nitrogen effluent concentrations were reduced by increasing the solids retention time. Future studies should focus on techno-economic and environmental life cycle impact analysis of these novel process configurations.
|
29 |
Digital Image Correlation in Dynamic Punch Testing and Plastic Deformation Behavior of Inconel 718Liutkus, Timothy James 09 September 2014 (has links)
No description available.
|
30 |
A uniform pressure electromagnetic actuator for forming flat sheetsKamal, Manish 07 October 2005 (has links)
No description available.
|
Page generated in 0.052 seconds