Spelling suggestions: "subject:"highstrength steels"" "subject:"higherstrength steels""
21 |
SELECTIVE OXIDATION AND REACTIVE WETTING OF FE-0.1C-6MN-2SI-xSN ADVANCED HIGH STRENGTH STEELS DURING CONTINUOUS HOT-DIP GALVANIZINGPourmajidian, Maedeh January 2018 (has links)
Third generation advanced high-strength steels (3G-AHSS) have received significant interest from leading auto steel industries and OEMs as candidate materials for reduced mass Body In White (BIW) components due to their unique combination of high specific strength and ductility. However, the continuous hot-dip galvanizing of these steels is challenging due to selective oxidation of the main alloying elements such as Mn, Si, Al and Cr at the steel surface during the annealing step prior to immersion in the galvanizing Zn(Al, Fe) bath, as extensive coverage of the substrate surface by these oxides is detrimental to reactive wetting, good coating adhesion and integrity.
Simulated galvanizing treatments were conducted on two prototype Fe-0.1C-6Mn-2Si (wt pct) 3G steels; one as the reference steel and the other with 0.05 wt pct Sn added to the composition. The combined effects of annealing temperature, time, process atmosphere oxygen partial pressure and 0.05 wt pct Sn addition on the selective oxidation of the steel substrates were determined. Subsequently, the reactive wetting of the steels with respect to the pre-immersion surface structures of the samples annealed for 120 s was examined. Annealing heat treatments were carried out at 800˚C and 690˚C in a N2-5 vol pct H2 process atmosphere under three dew points of –50˚C, –30˚C and +5˚C, covering process atmosphere oxygen partial pressures within the range of 1.20 10-27 atm to 1.29 10-20 atm. MnO was present at the outmost layer of the external oxides on all samples after annealing. However, the morphology, distribution, thickness and surface coverage were significantly affected by the experimental variables. Annealing the reference steel under the low dew point process atmospheres, i.e. –50˚C and –30˚C, resulted in the highest Mn surface concentration as well as maximum surface oxide coverage and thickness. The oxides formed under these process atmospheres generally comprised coarse, compact and continuous film forming nodules, whereas the surface morphologies and distributions obtained under the +5˚C dew point process atmosphere, which was consistent with the internal oxidation mode, exhibited wider spacing between finer and thinner MnO nodules. The grain boundary internal oxide networks had a multi layer structure with SiO2 and MnSiO3 at the oxide cores and shells, respectively. Significant morphological changes were obtained as a result of Sn addition. The continuous film-like external MnO nodules were modified to a fine and discrete globular morphology, with less surface coverage by the oxides and reduced external oxide thickness. Both the external and internal oxidations followed parabolic growth kinetics, where the depth of the internal oxidation zone decreased with Sn addition and decreasing oxygen partial pressure.
Poor reactive wetting was observed for the reference steel substrates that were annealed for 120 s under the –50˚C and –30˚C dew point process atmospheres at 800˚C and under the –50˚C dew point atmosphere at 690˚C, such that no integral metallic coating was formed after the 4 s immersion in the Zn(Al, Fe) bath. By contrast, excellent coating quality was obtained for the Sn-added steels when the –30˚C and +5˚C dew point process atmospheres were employed when annealing at 690˚C. The remainder of the experimental conditions demonstrated good reactive wetting with intermediate coating quality. For the two reference steels annealed at 800˚C under the –50˚C and –30˚C dew point process atmospheres, poor reactive wetting was due to full coverage of the surface by 116 nm and 121 nm thick and continuous MnO films. In the case of the 690˚C –50˚C reference steel with the external layer thickness of only 35 nm, however, poor wetting was attributed to substantial coverage of the surface by continuous, film-like oxides. In both cases, exposure of the underlying substrate to the bath alloy and an intimate contact between the substrate Fe and the bath dissolved Al could not take place and the formation of the Fe2Al5Znx interfacial layer was hidered.
For the processing conditions that satisfactory reactive wetting was obtained despite the pre-immersion selective oxidation of the surfaces, several reactive wetting mechanisms were determined. For the samples with a sufficiently thin external MnO layer, good reactive wetting was attributed to partial reduction of MnO by the bath dissolved Al, as well as bridging of the Mn sub-oxides by the Zn coating or Fe2Al5Znx interfacial intermetallics. Partial or full formation of the Fe2Al5Znx interfacial layer was observed in the successfully galvanized substrates with Fe-Al crystals formed between, underneath and also on top of the reduced oxides. Furthermore, for cases with widely-spaced, fine oxide nodules, it was found that the liquid bath alloy was able to infiltrate the external oxide/substrate interface, resulting in surface oxide lift-off and enhanced coating adhesion. It was globally concluded that the thin, discrete and fine globular morphology of external MnO, resultant of annealing the steel substrates with 0.05 wt pct Sn addition under the process atmosphere oxygen partial pressures consistent with internal oxidation, allowed for an enhanced reactive wetting by the Zn(Al, Fe) galvanizing bath which was manifested by increased amount of Al uptake and population of the Fe2Al5Znx intermetallics at the coating/steel interface. / Thesis / Doctor of Science (PhD)
|
22 |
Microstrain Partitioning, TRIP Kinetics and Damage Evolution in Third Generation Dual Phase and TRIP-Assisted Advanced High Strength SteelsPelligra, Concetta January 2024 (has links)
Lightweighting demands have been achieved by third generation (3G) Advanced High Strength Steels (AHSSs) by a means of increased strength. The challenge faced in doing so, however, is in ensuring that ductility and crashworthiness is efficiently retained. Key methods in which automotive research has been invested to achieve this strength-ductility balance is by microalloying to promote grain refinement, the introduction of precipitates, and the effective use of plasticity enhancing mechanisms. Specifically, the ability to tailor the stability of retained austenite during deformation has been crucial in manipulating the strength-to-ductility ratio of 3G AHSSs using the Transformation Induced Plasticity (TRIP) effect. On the other hand, dual phase (DP) (i.e: non-TRIP-assisted steels) continue to be most significantly manufactured due to their robust thermomechanical processing but are also compromised by their poor damage tolerance. Hence, considerable reports are available regarding the damage tolerance of DP steels, but the ability for the volume expansion associated with the austenite-to-martensite transformation to suppress damage evolution and enhance a steel’s local formability has not yet been thoroughly investigated.
Nonetheless, the damage processes that lead to fracture in 3G AHSSs are complex. A full understanding of the underlying phenomena requires a careful assessment of the strain partitioning amongst phases, how the microstructure evolves with strain and how damage, in the form of voids and micro-cracks, nucleates and grows. This can only be accomplished by applying a range of methodologies, including microscopic Digital Image Correlation (µDIC), X-ray Computed Microtomography (µXCT), Electron Backscattered Diffraction (EBSD) and X-ray Diffraction (XRD), all of which can be tracked as deformation proceeds.
This PhD thesis uses a novel post µDIC data processing technique to prove that a reduction in strain gradient, linked to the evolution Geometrically Necessary Dislocations (GNDs), at dissimilar phase interfaces is attainable with vanadium-microalloying and with use of the TRIP effect. A local strain gradient post µDIC data processing technique was developed and first applied on 3G DP steels to show that the microcompatibility between ferrite and martensite directly at the interface is considerably improved with vanadium-microalloying. This in turn microscopically explains this DP steel’s increased local formability/damage tolerance with vanadium micro-additions. Moreover, when applying this novel µDIC technique on two other 3G experimental steels of interest, an ultrahigh strength Quench & Partition (Q&P) steel and a continuous galvanizing line (CGL)-compatible Medium-Mn (med-Mn) steel, an even slower evolution of microstrain gradients at dissimilar phase interfaces was observed. This indicates that, although vanadium-microalloying can improve the damage tolerance of a DP steel, its ability to achieve the ultrahigh strengths is a direct result of the severe inhibition of dislocation motion at dissimilar phase boundaries. Eventually, at high strains, these local strain gradients cannot be maintained and results in premature damage nucleation. By comparison, at such high strains, distinct evidence of damage nucleation was not apparent in the 3G TRIP-assisted steels which is the result of a slow strain gradient evolution delayed by the effective use of TRIP.
This finding triggered a further investigation into isolating the impact the rate of TRIP exhaustion has on damage development. By intercritically annealing this prototype med-Mn steel (0.15C-5.8Mn-1.8Al-0.71Si) with a martensitic starting microstructure, within a narrow temperature interval (from 665 to 710°C), it was possible to make significant changes in the steel’s rate of TRIP exhaustion without making considerable changes to its physical microstructure. This steel exhibits the largest true strain at fracture (ɛf = 0.61), meets U.S. Department of Energy (DoE) mechanical targets (28,809 MPa%), and shows sustained monotonic work hardening when intercritically annealed at an intermediate IA temperature of 685°C for 120s. In addition, this IA condition showed optimal damage tolerance properties as an abundance of voids nucleated during its tensile deformation, but their growth was suppressed by prolonging TRIP over a large strain range. There is reason to believe that the heterogeneous distribution of austenite and Mn throughout this 685°C IA condition compared to the other two enabled its suppressed TRIP kinetics and in turn improved damage tolerance.
The impact that changes in stress-state, from a stress triaxiality of 0.33-0.89, has on microstrain partitioning, TRIP kinetics and damage evolution was tested on this med-Mn at its 685°C IA condition. With the machining of notches on tensile specimens, it was seen that a high stress triaxiality (0.74-0.89) accelerated the rate of TRIP, whereas the introduction of shear, through a misaligned notched specimen design, delayed TRIP kinetics. The change in mean stress imposed by the notches was deemed to have played an active role in TRIP exhaustion during the material’s tensile deformation. A unique electropolishing micro-speckle patterning technique was applied to show that the amount of strain that can be accommodated by the steel’s the polygonal ferrite-tempered martensitic regions are considerably impacted by external modifications in stress-state. While damages studies using different such notched tensile geometries revealed that once a critical void size is reached in this med-Mn steel, coalescence proceeds at an increasing, exponential rate up to fracture. It continues to remain a challenge to quantify the effects microstrain partitioning, TRIP kinetics and damage evolution separately, opening new avenues for future experimental and modeling investigations. / Thesis / Candidate in Philosophy / A lot of research up to now has been invested in the automotive industry to create steels that are lightweight, strong and show improved crashworthiness. The means by which this has been achieved is with the use of innovative processing routes to manufacture and implement Advanced High Strength Steels (AHSSs) in a vehicle’s body-in-white. Nonetheless, the constant global pressure to reduce greenhouse gas emissions has eventually driven research to a third-generation class of ultrahigh strength, lightweight AHSSs. These steels retain the weight savings of their second-generation counterparts but are more cost-effective to manufacture and can be adapted to current industrial line capabilities. Considerable work has been done to enable the manufacturing of 3G steels, yet the steel characteristics which underpin fracture, thereby affecting the crashworthiness of these steels, continues to be weakly understood. As such, at a microscopic scale, this thesis uses three different promising 3G AHSSs candidates to evaluate the impact their unique steel characteristics has on the ability to resist damage evolution and fracture.
|
23 |
Influence of welding heat input on microstructure, mechanical properties and corrosion behaviour of high-strength steelsGarcia, Mainã Portella January 2018 (has links)
Orientador: Prof. Dr. Gerson Luiz Mantovani / Coorientador: Prof. Dr. Renato Altobelli Antunes / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, Santo André, 2018. / Recentemente, a indústria automotiva tem acelerado os esforços para melhorar a economia de combustível dos automóveis. Os aços de alta resistência possibilitam a redução de peso, garantindo a segurança e desempenho. A Microestrutura, propriedades mecânicas e comportamento de corrosão de juntas soldadas de dois aços de alta resistência (LNE500 e AHSS900) foram estudados. Os aportes térmicos utilizados foram de 0,72, 0,70, 0,47 e 0,31 kJ/mm utilizando soldagem a arco elétrico. A microestrutura da junta soldada foi analisada por microscopia eletrônica de transmissão, microscopia eletrônica de varredura, microscopia óptica e difração de raios X. Os resultados confirmam a influência do aporte térmico na microestrutura, fases cristalinas, tamanho de grão, precipitados e suas distribuições. O perfil de dureza (Vickers) revelou uma região de amolecimento localizado na zona afetada pelo calor (ZAC) com grãos finos para as juntas soldadas do metal de base AHSS900. Os resultados do teste de tração revelaram uma variação significativa do escoamento e da resistência à tração entre o metal de base e as amostras soldadas, com a última apresentando ductilidade e resistência reduzidas. O comportamento de corrosão foi estudado utilizando impedância eletroquímica, polarização potenciodinâmica e técnica de varredura por eletrodo vibracional (SVET). A combinação dessas técnicas indicou onde e como a corrosão aconteceu. ZAC e metal de base atuaram como ânodo e o cordão de solda atuou como cátodo. SVET revelou que a corrosão iniciou no cordão de solda e se espalhou pela superfície da junta soldada. A grande quantidade de locais ativos (óxidos) e o alto teor de Si no cordão de solda podem ter sido responsáveis pelo início da corrosão nessa região. As imagens de microscopia confocal mostraram que a ZAC e o metal de base corroeram mais rápido do que o cordão de solda. / Recently, automotive producers have been accelerating efforts to significantly improve vehicle fuel economy. High-strength steels have been proven to achieve weight reduction while meeting vehicle safety and performance requirements. The microstructure, mechanical properties and corrosion behaviour of gas metal arc welded joints of two high strength steels (LNE500 and AHSS900) have been studied. The welded joints were obtained using heat input of 0.72, 0.70, 0.47 and 0.31 kJ/mm. The microstructure was investigated by transmission electron microscopy, scanning electron microscopy, optical microscopy and X-ray diffraction. The results confirm the influence of heat input on the microstructure, crystalline phases, grain size, precipitates size and distribution. Vickers microhardness test revealed a softening region in the fine-grained heat affected zone (FGHAZ) for the AHSS900 welded joints. The tensile test results revealed a significant variation in the magnitude of yield and tensile strength between the base metal and welded samples, with the latter exhibiting reduced ductility and strength. Corrosion behaviour was studied using electrochemical impedance spectroscopy, potentiodynamic polarisation and scanning vibrating electrode technique (SVET). The combination of these techniques indicated that HAZ and BM acted as the anode and weld metal (WM) acted as the cathode of the galvanic couple. SVET showed that corrosion started in the WM and, then, it spread to the whole joint. The high amount of active sites (oxide inclusions) and the high Si content in the WM may be responsible for corrosion initiation. HAZ/BM corroded faster than WM, producing a depth difference, which was detected by confocal laser scanning microscope.
|
24 |
Laser welding of boron steels for light-weight vehicle applicationsFahlström, Karl January 2015 (has links)
Laser beam welding has gained a significant interest during the last two decades. The suitability of the process for high volume production has the possibility to give a strong advantage compared to several other welding methods. However, it is important to have the process in full control since various quality issues may otherwise occur. During laser welding of boron steels quality issues such as imperfections, changes in local and global geometry as well as strength reduction can occur. The aspects that need to be considered are strongly depending on alloy content, process parameters etc. These problems that can occur could be fatal for the construction and the lowest level of occurrence is wanted, independent of industry. The focus of this study has been to investigate the properties of laser welded boron steel. The study includes laser welding of boron alloyed steels with strengths of 1500 MPa and a recently introduced 1900 MPa grade. Focus has been to investigate weldability and the occurrence of cracks, porosity and strength reducing microstructure that can occur during laser welding, as well as distortion studies for tolerances in geometry. The results show that both conventional and 1900 MPa boron alloyed steel are suitable for laser welding. Due to the martensitic structure of welds the material tends to behave brittle. Cracking and porosity do not seem to be an issue limiting the use of these steels. For tolerances in geometry for larger structures tests has been done simulating laser welding of A-pillars and B-pillars. Measurements have been done with Vernier caliper as well as a more advanced optical method capturing the movements during the welding sequence. Results from the tests done on Ushaped beams indicates that depending on the geometry of the structure and heat input distortions can be controlled to give distortions from 1 to 8 mm, at a welding length of 700 mm. This means that important geometry points can be distorted several millimeters if the laser welding process not is controlled.
|
25 |
Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processesGeorges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
|
26 |
Fracture prediction of stretched shear cut edges in sheets made of Dual-Phase steelFalk, Johannes January 2017 (has links)
Dual-Phase (DP) steels, part of the group of Advanced High Strength Steels (AHSS), are used by car manufactures due to its large strength to weight ratio. The high strength of the DP steel does have a negative impact on the formability during sheet metal forming and stretch forming, e.g. fractures often appear in shear cut edges during forming of blanks made of DP steel. The main objective with this thesis is to develop a new punch for Volvo Cars that concentrates the strain to the sheared edges of a test specimen made from different types of DP steel. This is done to be able to measure and obtain maximum fracture strain during stretch forming tests in a press. The newly developed test method is called CTEST (Concentrated Trim Edge Strain Test). The tests are performed with DP steel specimens with three different qualities of the shear cut edges; fine cut, medium cut and worn cut. DP steels tested are DP600GI, DP600UC and DP800GI from three different suppliers. 10 different types of DP steels are tested in this study with different thickness. Thickness of specimens tested are 1 mm, 1.1 mm, 1.5 mm and 2 mm and all specimens tested have a lengthwise (RD) rolling direction. The quality of the sheared cut edge has a great impact to the formability and maximum fracture strain of the specimen. A specimen with a fine cut endures higher fracture strain than medium cut and a worn cut for all types of DP steel with different thickness. A 1 mm thick specimen endures a lower fracture strain than 1.5 mm and 2 mm specimen for all cut qualities. Further, the impact of the orientation of the burr zone of a shear cut edge is studied. With the burr zone facing upwards from the CTEST punch the formability of the specimens is decreased compared to a burr zone facing downwards, especially for a worn cut specimen with micro cracks and imperfections in the edge surface. ARAMIS Digital Image Correlation (DIC) system is used to analyze the specimen edges during press experiments. The ARAMIS results unveil that several small fractures appear in the sheared edges of a specimen just before the specimens split into two pieces. This phenomenon was seen for specimen with worn and medium shear cut qualities. Finite Element (FE) simulations of the CTEST is performed in AutoForm to determine maximum values of the true strain for the three different cut qualities. The simulation in AutoForm does show a slightly higher value of the force and press depth than the value from the press test before maximum fracture strain in reached. The small fractures seen in ARAMIS just before the specimen split into two pieces cannot be seen in the simulation in AutoForm.
|
27 |
Improvement of the mechanical properties of TRIP-assisted multiphase steels by application of innovative thermal or thermomechanical processesGeorges, Cédric 28 August 2008 (has links)
For ecological reasons, the current main challenge of the automotive industry is to reduce the fuel consumption of vehicles and then emissions of greenhouse gas. In this context, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as TRIP steels. A combination of high strength and large elongation is obtained thanks to the TRansformation Induced Plasticity (TRIP) effect. However, improvement of the mechanical properties is still possible, especially by the refinement of the matrix. In this work, two main ways were followed in order to reach improved properties. The classical way consisting of the annealing of cold-rolled samples and an innovative way consisting of obtaining the desired microstructure by direct hot rolling of the samples. In the classical way, this refinement can be obtained by acting on the chemical composition (with such alloying elements like Cu and Nb). It was observed that complete recrystallisation of the ferrite matrix is quite impossible in presence of Cu precipitates. In addition, if the ferrite recrystallisation is not completed before reaching the eutectoid temperature, the recrystallisation will be slowed down by a large way. An innovative heat treatment consisting in keeping the copper in solid solution in the high-Cu steel was developed. Therefore, ferrite recrystallises quite easily and very fine ferrite grains (~1µm) were obtained. In the innovative way, the effects of hot-rolling conditions on TRIP-assisted multiphase steels are of major importance for industrial practice and could open new dimensions for the TRIP steels (i.e. thanks to precipitation mechanisms leading to additive strengthening). Impressive mechanical properties (true stress at maximum load of 1500 MPa and true strain at uniform elongation of 0.22) were obtained with a relatively easy thermomechanical process, the role played by Nb being essential.
|
28 |
Materiais para aplicação em arames da armadura de tração de dutos flexíveis : comportamento frente a entalhesWallauer, Frederico Alberto January 2015 (has links)
A armadura de tração de dutos flexíveis é a camada responsável por suportar as cargas axiais destes equipamentos em campo. Com a tendência de aumento das profundidades de exploração e produção de petróleo offshore, principalmente dos campos do pré-sal brasileiro, faz-se necessário o uso de materiais com desempenho superior. Este trabalho buscou avaliar e comparar dois aços de alta resistência mecânica para tal aplicação, um predominantemente perlítico e outro martensítico. Durante a vida em serviço destes componentes, eles sofrem tensões axiais cíclicas associadas ao processo de corrosão, que gera pites como concentradores de tensões. Considerando estes aspectos, os materiais foram avaliados segundo seu comportamento à fadiga sem e com a presença de um pequeno defeito conhecido, que atua como um entalhe e busca simular um pite de corrosão. Além disso, esses materiais foram caracterizados metalúrgica e mecanicamente e sua tenacidade à fratura foi estimada via o método do CTOD. A partir dos dados experimentais, foi quantificada a sensibilidade ao entalhe, guiada essencialmente pelo processo de iniciação de trinca, ao passo que a tenacidade à fratura não foi decisiva. O material martensítico apresentou desempenho superior em fadiga e menor sensibilidade ao entalhe e mostrou-se promissor para a aplicação como arame da armadura de tração. / The tensile armor of flexible pipes is the layer responsible for support axial loads of this equipment in field. With the trend of deep increase in offshore oil exploration and production, mainly in pre-salt fields, the use of materials with high performance becomes necessary. The aim of this dissertation is evaluate and compare two high strength steels for such application, one with perlite and other with martensitic matrix. During service life of these components, they are damaged by cyclic loading associated with corrosion process which promote corrosion pits like stress concentrators. Considering these aspects, the materials were evaluated according their fatigue behavior with and without a small defect that act as a notch and simulates a corrosion pit. In addition, they were characterized metallurgical and mechanically and their fracture toughness was estimated through CTOD test. From experimental data, notch sensitivity was quantified. This was driven by initiation process, and fracture toughness was not decisive. The martensitic material showed higher fatigue performance and lower notch sensitivity and presented itself promising for tensile armor wire application.
|
29 |
Materiais para aplicação em arames da armadura de tração de dutos flexíveis : comportamento frente a entalhesWallauer, Frederico Alberto January 2015 (has links)
A armadura de tração de dutos flexíveis é a camada responsável por suportar as cargas axiais destes equipamentos em campo. Com a tendência de aumento das profundidades de exploração e produção de petróleo offshore, principalmente dos campos do pré-sal brasileiro, faz-se necessário o uso de materiais com desempenho superior. Este trabalho buscou avaliar e comparar dois aços de alta resistência mecânica para tal aplicação, um predominantemente perlítico e outro martensítico. Durante a vida em serviço destes componentes, eles sofrem tensões axiais cíclicas associadas ao processo de corrosão, que gera pites como concentradores de tensões. Considerando estes aspectos, os materiais foram avaliados segundo seu comportamento à fadiga sem e com a presença de um pequeno defeito conhecido, que atua como um entalhe e busca simular um pite de corrosão. Além disso, esses materiais foram caracterizados metalúrgica e mecanicamente e sua tenacidade à fratura foi estimada via o método do CTOD. A partir dos dados experimentais, foi quantificada a sensibilidade ao entalhe, guiada essencialmente pelo processo de iniciação de trinca, ao passo que a tenacidade à fratura não foi decisiva. O material martensítico apresentou desempenho superior em fadiga e menor sensibilidade ao entalhe e mostrou-se promissor para a aplicação como arame da armadura de tração. / The tensile armor of flexible pipes is the layer responsible for support axial loads of this equipment in field. With the trend of deep increase in offshore oil exploration and production, mainly in pre-salt fields, the use of materials with high performance becomes necessary. The aim of this dissertation is evaluate and compare two high strength steels for such application, one with perlite and other with martensitic matrix. During service life of these components, they are damaged by cyclic loading associated with corrosion process which promote corrosion pits like stress concentrators. Considering these aspects, the materials were evaluated according their fatigue behavior with and without a small defect that act as a notch and simulates a corrosion pit. In addition, they were characterized metallurgical and mechanically and their fracture toughness was estimated through CTOD test. From experimental data, notch sensitivity was quantified. This was driven by initiation process, and fracture toughness was not decisive. The martensitic material showed higher fatigue performance and lower notch sensitivity and presented itself promising for tensile armor wire application.
|
30 |
Caractérisation d'aciers à très haute limite d'élasticité vis-à-vis de la fragilisation par l’hydrogène / Non fourni.Ly, Céline 22 January 2009 (has links)
Les aciers THLE ont la particularité de posséder à la fois une bonne ductilité et de hautes caractéristiques mécaniques. Ceci les rend particulièrement adaptés pour l'industrie automobile, dont les principales exigences sont l'allègement du véhicule et la sécurité des passagers. Toutefois, il est bien connu que l'augmentation des caractéristiques mécaniques accroît la susceptibilité à la fragilisation par l'hydrogène. Ce travail de thèse est consacré à l'étude de la susceptibilité vis-à-vis de la fragilisation par l'hydrogène de quatre aciers THLE : un DP, un TRIP, un CP et le BAS 100, un acier enrichi en vanadium et chrome. Un acier aux propriétés mécaniques plus modestes, dénommé HE (Haute Elasticité) a servi de référence. Les caractéristiques de transport de l'hydrogène dans ces aciers ont été étudiées, grâce à des essais de perméation électrochimique avec chargement en milieu acide, éventuellement additionné d'un promoteur d'hydrogénation (l'arsenic). Comme observé sur d'autres aciers, il faut souligner l'absence de conditions d'entrée stationnaires, dont il faut tenir compte dans l'évaluation des caractéristiques de diffusion. La diffusivité à température ambiante est apparue élevée pour tous les aciers, et une corrélation a été établie entre la microstructure et la diffusivité de l'hydrogène dans le matériau : plus la microstructure est fine et complexe, moins la diffusivité est élevée. De plus, l'évaluation des concentrations subsurfaciques sur les courbes en présence d'arsenic a révélé des valeurs relativement élevées pour les trois aciers aux caractéristiques mécaniques les plus élevées (TRIP 800, CP 800 et BAS 100). Ces valeurs sont conformes avec les teneurs en hydrogène diffusible mesurées par dosage juste après la perméation. Les dosages d'hydrogène résiduel, réalisés par désorption thermique sous vide après perméation, ont par ailleurs indiqué que le piégeage profond dans ces aciers était peu important, même après chargement sous polarisation et en présence d'arsenic. Ceci peut s'expliquer par des structures très bien élaborées, très fines et comportant peu de défauts. Des essais de traction ont montré qu'une hydrogénation sévère (en présence d'un promoteur) était nécessaire pour obtenir une fragilisation notable des aciers THLE. Hormis les cas extrêmes de dégradation spontanée par HIC (cloquage, fissuration), la fragilisation est imputable à l'hydrogène diffusible ou faiblement piégé car les teneurs en hydrogène piégé profondément restent négligeables. Dans les conditions industrielles, en décapage acide HCl en présence d'inhibiteurs, les résultats de perméation, de dosage et de traction s'accordent à montrer l'absence de fragilisation sur ce type d'acier. Les inhibiteurs testés semblent jouer un rôle de barrière physique, par adsorption sur le métal nu, limitant ainsi tant l'entrée d'hydrogène que la corrosion. / The distinctive feature of Very High Strength Steels (VHSS) is to present a good combination of ductility and high strength. This makes them particularly interesting for the automotive industry because of the increasing demand for the reduction of car weight and the improvement of passengers security. However, it is known that increasing mechanical characteristics enhances susceptibility to hydrogen embrittlement. The aim of this doctoral thesis work is to study the susceptibility to hydrogen embrittlement of four very high strength steels : a DP (Dual Phase), a TRIP (Transformation Induced Plasticity), a CP (Complex Phase) and BAS, a Cr-V enriched high strength steel. Low alloyed steel with lower mechanical properties, HE (high Elasticity) has been used as a reference. Hydrogen transport characteristics in these steels were investigated thanks to electrochemical permeation tests including charging in acid solution, possibly with the addition of a hydrogenation promoter (arsenic). As already observed on other steels, the absence of stationary entry conditions is to be underlined due to its necessity for the evaluation of diffusion characteristics. Diffusivity at room temperature has appeared to be very high in each of the five steels and a correlation between hydrogen diffusion coefficient and microstructure has been drawn : the finer and the more complex it is, the lower is the apparent diffusion coefficient. Moreover, sub-surface concentrations calculated on the permeation transient in the presence of arsenic have revealed relatively high values for the three steels with the higher mechanical properties (TRIP 800, CP 800 and BAS 100). These values comply with the diffusible hydrogen content measured by thermal desorption technique just after permeation. Otherwise, residual hydrogen dosage tests by thermal desorption under vacuum, have indicated that deep trapping is very low for these steels, even after charging under polarisation and in the presence of arsenic. These results can be explained by fine and homogeneous microstructures that are very well developed with few lattice defects. Ordinary tensile tests have shown the necessity of extreme charging conditions (in the presence of a promoter) for VHS steel embrittlement. With an exception in the case of extreme spontaneaous damages created by HIC (blistering, cracking), embrittlement is imputable to diffusible and weakly trapped hydrogen because deeply trapped hydrogen content is very low. In industrial conditions, during acid pickling while in the presence of inhibitors, permeation, dosage and tensile tests results suggest the absence of embrittlement for the steels. Tested inhibitors seem to act as a physical barrier, by adsorption on the bare steel surface, and limit that way hydrogen absorption and corrosion.
|
Page generated in 0.0515 seconds