1 |
Avaliação do processo de fermentação alcoólica de suco de maçã obtido por liquefação enzimáticaOliveira, Maria Carolina Santos de 27 January 2006 (has links)
Made available in DSpace on 2017-07-21T18:53:13Z (GMT). No. of bitstreams: 1
Maria Carolina Santos.pdf: 831482 bytes, checksum: 8053abff10699b2f862586aa8a3301e7 (MD5)
Previous issue date: 2006-01-27 / The application of clean technology concept aims to optimize the extraction process in order to obtain maximum juice, to decrease loss and to manage the generated residue applicability. The use of enzymatic complexes, of cellulases and pectinases, during juice extraction process allows to modify physical-chemical characteristics of the products and to minimize residue
generation. This work aimed to study the fermentative behavior of apple juice obtained through the use of clean technology concept, called enzymatic liquefaction. Process and liquefaction products characteristics were compared to extraction by pressing. An increase of 28.43% in total acidity, 28.6% in total nitrogen and 39.38% in phenolic compounds was found in the juice obtained by liquefaction. The pomace presented a decrease of 23.35% in pectine, an increase of 38.3% in ether extract and was not observed statistical difference for total alimentary fiber values. By using enzymatic liquefaction process was observed a decrease of 19% of humid residue, when compared to pressing process. The juices obtained by enzymatic liquefaction and pressing process were submitted for fermentation, in defined
conditions of temperature and time, when was undertaken the analysis of biomass production
kinetics, ethanol, flavor volatile compounds formation and the total sugar reductor consume. The superior alcohol sum for fermented obtained from liquefaction and pressing was 133.6mg.L-1 and 130.4mg.L-1, respectively. Methanol average levels, resulting from pectin desmetoxilation by pectinesterase activity were 486.24mg.L-1 for liquefaction process and 13.95mg.L-1 for pressing process. / A aplicação do conceito da tecnologia limpa visa otimizar o processo de extração para que o máximo de suco seja obtido, diminuir perdas e gerenciando a aplicabilidade do resíduo gerado. A utilização de complexos enzimáticos, constituídos por celulases e pectinases, na extração de suco permite além de modificar características físico-químicas dos produtos, minimizar a geração de resíduos. Estudar o comportamento fermentativo do suco de maçã
obtido a partir o conceito da tecnologia limpa, usando a liquefação enzimática, foi o objetivo deste trabalho. As características do processo e dos produtos da liquefação foram comparadas à extração por prensagem. Foi verificado um aumento em 28,43% na acidez total, 28,6% para o nitrogênio total e 39,38% nos compostos fenólicos no suco obtido por liquefação. No bagaço proveniente da liquefação foi obtida uma diminuição de 23,35% de pectina, um aumento no extrato etéreo de 38,3% e não foi verificada diferença estatística entre os valores obtidos para fibra alimentar total. Com a utilização do processo de liquefação enzimática foi
verificada uma redução de 19% na quantidade de resíduo úmido gerado, quando comparado ao processo de prensagem. Os sucos provenientes tanto da liquefação enzimática quanto da prensagem foram submetidos à fermentação, em condições padrão de temperatura e tempo, sendo analisada a cinética de produção de biomassa, etanol, formação dos compostos voláteis do aroma e o consumo de açúcares redutores totais. A soma dos álcoois superiores foi de 133,6mg.L-1 e 130,4mg.L-1 para os fermentados obtidos da liquefação e prensagem, respectivamente. Os teores médios de metanol, resultantes da desmetoxilação da pectina pela atividade da pectinesterase foram de 486,24mg.L-1 para o fermentado obtido da liquefação e
13,95mg.L-1 para o fermentado proveniente da prensagem.
|
2 |
Catalytic Conversion of Syngas to Higher Alcohols over Cu-Fe Based CatalystsLu, Yongwu 13 December 2014 (has links)
Higher alcohol synthesis (HAS) from syngas or biomass-derived syngas is an important process for the production of oxygenate fuels, fuel additives and other intermediates for valueded chemical feedstock to produce medicine, cosmetics, lubricants, detergents, and polyesters. Chapter I reviews biomass to liquid fuels technology, higher alcohols being used as alternative fuels and fuel additives, the historical perspective and commercial status of higher alcohols, the catalyst system and the reaction mechanism for HAS from syngas. Chapter II discusses the Zn-Mn promoted Cu-Fe based catalyst that was synthesized by the co-precipitation method. The reaction temperature has been tested to study the influence on the catalytic performance. The maximal CO conversion rate was 72%, and the yield of alcohol and hydrocarbon was also very high. Cu was the active site for alcohol synthesis, iron carbide was the active site for olefin and paraffin synthesis. The reaction mechanism of HAS from syngas over Zn-Mn promoted Cu-Fe based catalyst was proposed. Chapter III documents the three-dimensionally ordered macroporous (3DOM) Cu-Fe catalyst developed using a glyoxylate route colloidal crystal template method. The high intrinsic activity was ascribed to three factors. First, the unique ordered structure has a large pore size and interconnected macroporous tunnels of the catalyst with a large accessible surface area to improve the catalytic activity. Second, a high density of uniformly distributed defective Cu0 and Fe5C2 nanoparticles derived from the glyoxylate route helps to provide abundant, active, and stable dual sites. Third, atomic steps on the Cu surface, induced by planar defects and lattice strain, serve as high-activity oxygenation sites. Active Fe5C2 chain-growth sites intimately surround the defective and strained form of the Cu surface, which results in a synergetic effect between the active and stable Cu–FexCy dual site for HAS. In Chapter IV, in situ ambient pressure x-ray photoelectron spectroscopy and in situ synchrotron powder diffraction were applied to identify the active site of 3DOM Cu-Fe catalyst for HAS. The results show that after syngas pretreatment of the 3DOM Cu-Fe catalyst, Cu0 is the active oxygenation site for alcohol synthesis, and Fe5C2 is the active site for carbon chain growth.
|
3 |
Characterization of Cu-Co-Cr-K CatalystsDoan, Phuong Thanh 04 August 2001 (has links)
The production of higher alcohols from synthesis gas over Cu-Co-Cr-K catalysts has been studied. The production rate of alcohol was measured in the flow reactor, operating at 250 to 350°C, 3500 to 8000 gas hourly space velocity, and 900 to 1800 psig. The productivity as a function of temperature, pressure, gas hourly space velocity, carbon dioxide content of the feed, and reaction time was also examined. Physisorption data have been analyzed using the Langmuir model, the Brunauer-Emmett-Teller (BET) method, the Barret-Joyner-Halenda (BJH) method, and the de Boer and Halsey t-method. The surface areas of catalysts CB1(1), CB1(3), and CB1(1) after reaction were 39.9 ± .9 m2/g, 28.9 ± 1.7 m2/g, and 26.5 ± 0.3 m2/g, respectively. Moreover, information such as pore size distribution, pore shape, monolayer volume, micropore volume and thickness of adsorption layer were also obtained. The atomic concentration and oxidation states of near surface species were established by X-ray Photoelectron Spectroscopy.
|
Page generated in 0.0439 seconds