1 |
Simultaneous Generalized Hill Climbing Algorithms for Addressing Sets of Discrete Optimization ProblemsVaughan, Diane Elizabeth 22 August 2000 (has links)
Generalized hill climbing (GHC) algorithms provide a framework for using local search algorithms to address intractable discrete optimization problems. Many well-known local search algorithms can be formulated as GHC algorithms, including simulated annealing, threshold accepting, Monte Carlo search, and pure local search (among others).
This dissertation develops a mathematical framework for simultaneously addressing a set of related discrete optimization problems using GHC algorithms. The resulting algorithms, termed simultaneous generalized hill climbing (SGHC) algorithms, can be applied to a wide variety of sets of related discrete optimization problems. The SGHC algorithm probabilistically moves between these discrete optimization problems according to a problem generation probability function. This dissertation establishes that the problem generation probability function is a stochastic process that satisfies the Markov property. Therefore, given a SGHC algorithm, movement between these discrete optimization problems can be modeled as a Markov chain. Sufficient conditions that guarantee that this Markov chain has a uniform stationary probability distribution are presented. Moreover, sufficient conditions are obtained that guarantee that a SGHC algorithm will visit the globally optimal solution over all the problems in a set of related discrete optimization problems.
Computational results are presented with SGHC algorithms for a set of traveling salesman problems. For comparison purposes, GHC algorithms are also applied individually to each traveling salesman problem. These computational results suggest that optimal/near optimal solutions can often be reached more quickly using a SGHC algorithm. / Ph. D.
|
2 |
A Convergence Analysis of Generalized Hill Climbing AlgorithmsSullivan, Kelly Ann 21 April 1999 (has links)
Generalized hill climbing (GHC) algorithms provide a unifying framework for describing several discrete optimization problem local search heuristics, including simulated annealing and tabu search. A necessary and a sufficient convergence condition for GHC algorithms are presented.
The convergence conditions presented in this dissertation are based upon a new iteration classification scheme for GHC algorithms. The convergence theory for particular formulations of GHC algorithms is presented and the implications discussed. Examples are provided to illustrate the relationship between the new convergence conditions and previously existing convergence conditions in the literature. The contributions of the necessary and the sufficient convergence conditions for GHC algorithms are discussed and future research endeavors are suggested. / Ph. D.
|
3 |
Assessing the Finite-Time Performance of Local Search AlgorithmsHenderson, Darrall 18 April 2001 (has links)
Identifying a globally optimal solution for an intractable discrete optimization problem is often cost prohibitive. Therefore, solutions that are within a predetermined threshold are often acceptable in practice. This dissertation introduces the concept of B-acceptable solutions where B is a predetermined threshold for the objective function value.
It is difficult to assess a priori the effectiveness of local search algorithms, which makes the process of choosing parameters to improve their performance difficult. This dissertation introduces the B-acceptable solution probability in terms of B-acceptable solutions as a finite-time performance measure for local search algorithms. The B-acceptable solution probability reflects how effectively an algorithm has performed to date and how effectively an algorithm can be expected to perform in the future. The B-acceptable solution probability is also used to obtain necessary asymptotic convergence (with probability one) conditions. Upper and lower bounds for the B-acceptable solution probability are presented. These expressions assume particularly simple forms when applied to specific local search strategies such as Monte Carlo search and threshold accepting. Moreover, these expressions provide guidelines on how to manage the execution of local search algorithm runs. Computational experiments are reported to estimate the probability of reaching a B-acceptable solution for a fixed number of iterations. Logistic regression is applied as a tool to estimate the probability of reaching a B-acceptable solution for values of B close to the objective function value of a globally optimal solution as well as to estimate this objective function value. Computational experiments are reported with logistic regression for pure local search, simulated annealing and threshold accepting applied to instances of the TSP with known optimal solutions. / Ph. D.
|
4 |
Generalized hill climbing algorithms for discrete optimization problemsJohnson, Alan W. 06 June 2008 (has links)
Generalized hill climbing (GHC) algorithms are introduced, as a tool to address difficult discrete optimization problems. Particular formulations of GHC algorithms include simulated annealing (SA), local search, and threshold accepting (T A), among. others. A proof of convergence of GHC algorithms is presented, that relaxes the sufficient conditions for the most general proof of convergence for stochastic search algorithms in the literature (Anily and Federgruen [1987]).
Proofs of convergence for SA are based on the concept that deteriorating (hill climbing) transitions between neighboring solutions are accepted by comparing a deterministic function of both the solution change cost and a temperature parameter to a uniform (0,1) random variable. GHC algorithms represent a more general model, whereby deteriorating moves are accepted according to a general random variable.
Computational results are reported that illustrate relationships that exist between the GHC algorithm's finite-time performance on three problems, and the general random variable formulations used. The dissertation concludes with suggestions for further research. / Ph. D.
|
5 |
Land Leveling Using Optimal Earthmoving Vehicle RoutingMcInvale, Howard D. 30 April 2002 (has links)
This thesis presents new solution approaches for land leveling, using optimal earthmoving vehicle routing. It addresses the Shortest Route Cut and Fill Problem (SRCFP) developed by Henderson, Vaughan, Wakefield and Jacobson [2000]. The SRCFP is a discrete optimization search problem, proven to be NP-hard. The SRCFP describes the process of reshaping terrain through a series of cuts and fills. This process is commonly done when leveling land for building homes, parking lots, etc. The model used to represent this natural system is a variation of the Traveling Salesman Problem. The model is designed to limit the time needed to operate expensive, earthmoving vehicles. The model finds a vehicle route that minimizes the total time required to travel between cut and fill locations while leveling the site. An optimal route is a route requiring the least amount of travel time for an individual earthmoving vehicle.
This research addresses the SRCFP by evaluating minimum function values across an unknown response surface. The result is a cost estimating strategy that provides construction planners a strategy for contouring terrain as cheaply as possible. Other applications of this research include rapid runway repair, and robotic vehicle routing. / Master of Science
|
Page generated in 0.0903 seconds