141 |
Studies of the aging patterns of nitric oxide synthase in rodent hippocampus.January 1997 (has links)
by Wong Ho Wai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 107-129). / Abstract --- p.i / List of Abbreviations --- p.ii / Contents --- p.iii / Chapter Chapter 1. --- Introduction / Chapter 1.1 --- Introduction of aging in central nervous system --- p.1 / Chapter 1.2 --- Introduction of hippocampus / Structure of the hippocampus --- p.4 / Function of hippocampus --- p.6 / Chapter 1.3 --- A literature review of aging in hippocampus / Cell loss in aging --- p.8 / Ultrastructural changes in aging --- p.9 / Changes in neurotransmitter system --- p.10 / Neuroglial change --- p.11 / Change in potentiation --- p.13 / Chapter 1.4 --- A literature survey of Nitric Oxide Synthase (NOS) / General introduction of Nitric Oxide Synthase --- p.15 / Introduction of nNOS --- p.15 / Introduction of iNOS --- p.16 / Introduction of eNOS --- p.17 / Similarities and differences among isoforms --- p.18 / Role of NO/NOS in neurotransmission --- p.19 / Role of NO in neurotoxicity --- p.23 / Chapter 1.5 --- Aim of study --- p.25 / Chapter Chapter 2. --- Change of nNOS in aging / Chapter 2.1 --- Purpose and approach --- p.27 / Chapter 2.2 --- Basic principle of the techniques / Basic principle of immunohistochemistry --- p.28 / Basic principle of RT-PCR --- p.28 / Chapter 2.3 --- Experimental procedure / nNOS immunohistochemistry --- p.32 / RT-PCR of nNOS --- p.34 / Chapter 2.4 --- Result / nNOS immunohistochemistry --- p.38 / RT-PCR of nNOS --- p.44 / Chapter Chapter 3. --- Expression of iNOS in aging / Chapter 3.1 --- Purpose and approach --- p.50 / Chapter 3.2 --- Experimental procedure / iNOS immunohistochemistry --- p.50 / RT-PCR analysis of iNOS --- p.51 / Chapter 3.3 --- Result / iNOS immunohistochemistry --- p.52 / RT-PCR analysis of iNOS --- p.56 / Chapter Chapter 4. --- Verification of the RT-PCR product of iNOS / Chapter 4.1 --- Purpose and approach --- p.58 / Chapter 4.2 --- Basic principle --- p.58 / Chapter 4.3 --- Experimental procedure / Elution of PCR product from PAGE gel --- p.60 / Restriction digestion of the eluted PCR product --- p.61 / Chapter 4.4 --- Result --- p.62 / Chapter Chapter 5. --- Identification of the iNOS-positive cells / Chapter 5.1 --- Purpose and approach --- p.64 / Chapter 5.2 --- Experimental procedure --- p.64 / Chapter 5.3 --- Result --- p.65 / Chapter Chapter 6. --- Quantitation of astrocyte in aging hippocampus / Chapter 6.1 --- Purpose and approach --- p.67 / Chapter 6.2 --- Experimental procedure --- p.68 / Chapter 6.3 --- Result --- p.69 / Chapter Chapter 7. --- Detection of apoptosis in aging / Chapter 7.1 --- Introduction of apoptosis --- p.74 / Chapter 7.2 --- Purpose and approach --- p.75 / Chapter 7.3 --- Basic principle --- p.76 / Chapter 7.4 --- Experimental procedure / TUNEL method --- p.77 / DNA gel electrophoresis --- p.78 / Chapter 7.5 --- Result / TUNEL method --- p.80 / DNA gel electrophoresis --- p.82 / Chapter Chapter 8. --- Discussion / Chapter 8.1 --- Pattern of neuronal NOS in aging / Localization of nNOS --- p.84 / Decrease in staining of nNOS in the hippocampus during aging --- p.87 / No change in nNOS mRNA level --- p.88 / nNOS in aging - past and present works --- p.89 / Implication of the result --- p.91 / Chapter 8.2 --- Increased iNOS expression in aging / Neurotoxicity of iNOS --- p.93 / Circumstances of iNOS expression --- p.95 / Discussion of the present study --- p.96 / Chapter 8.3 --- Detection of apoptosis in aging --- p.103 / Chapter Chapter 9. --- Conclusion --- p.106 / Biblography --- p.107 / Appendix --- p.130 / Acknowledgements --- p.134
|
142 |
Behavioral and Electrophysiological Evidence for Hippocampal Involvement in Object Motion Processing in C57BL/6J MiceUnknown Date (has links)
Considerable research has been carried out to establish a rodent model for the
study of human memory, yet functional similarities between the species remain up for
debate. The hippocampus, a region deep within the medial temporal lobe of the
mammalian CNS, is critical for long-term episodic memory. Projections from the medial
entorhinal cortex convey spatial/contextual information, while projections from the
lateral entorhinal cortex convey item/object information to the hippocampus. The
functional significance of these parallel projections to the rodent hippocampus has been
suggested to support spatial processing, while the same projections to the human
hippocampus support spatial and non-spatial memory. Discharging in a location-specific
manner, hippocampal place cells contribute to spatial memory; however, evidence for
neuronal correlates of non-spatial object memory has not been fully defined. The current
experiments were designed to address the following questions, while utilizing
electrophysiology, functional inactivation during a novel behavioral task, and immunohistochemistry. Is the memory for objects hippocampal-dependent, solely due to
the location of the object, or are objects represented within hippocampal activity
independent of location? To tease apart spatial and non-spatial processing by the
hippocampus, the spatial aspects of 3D objects were enhanced by utilizing movement. A
novel discriminatory avoidance task, Knowing Your Enemy, was adapted from an Enemy
Avoidance task to test true object memory in mice. Current findings support the notion
that object-associations acquisition depends upon a specific context. Retrieval of such
object-associations is not context-dependent, yet remains sensitive to temporary
inactivation of the CA1 region of the dorsal hippocampus. The avoidance impairments
observed following hippocampal inactivation were shown to not be a result of reduced
anxiety. Immunohistochemical marker expression suggests that the CA1 region was
highly active during object exposures, yet the hippocampal system responded
differentially to moving and to stationary objects. Recordings of CA1 neurons yielded
non-bursting object-related activity during object exploration, and place cell activity
remained unaffected in the presence of moving objects; supporting independent, yet
simultaneous processing of spatial and non-spatial information within the hippocampus.
Together, the current findings support the notion that the CA1 region of the rodent
hippocampus processes object-related information, independent of spatial information. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
143 |
Secreted amyloid precursor protein-alpha modulates hippocampal long-term potentiation, in vivoTaylor, Chanel Jayne, n/a January 2008 (has links)
Alzheimer�s disease (AD) is a neurodegenerative disorder, charaeterised by progressive loss of memory. It is important to understand what factors initiate the onset of AD so that effective therapeutic treatments can be developed to target the precise mechanisms that initiate this disease. Currently, synaptic dysfunction is widely believed to be the first significant alteration preceding the onset of AD, and is thought to be initiated by an intracellular accumulation of amyloid-β (Aβ), or a free radical-induced increase of oxidative stress. As Aβ levels rise during the onset of AD, a concomitant reduction of secreted amyloid precursor protein-α (sAPPα) is observed, as the two proteins exist in equilibrium. Intriguingly, the neuroprotective and neurotrophic properties of sAPPα indicate that it is intimately involved in the physiological pathways of the major hypotheses for the cause of AD, and may also be involved in the mechanisms that underlie learning and memory. Therefore, it is possible that during the onset of AD, the decrease of sAPPα may contribute to synaptic dysfunction by disrupting the mechanisms of synaptic plasticity.
Long-term potentiation (LTP) is the leading experimental model for investigating the neural substrate of memory formation, and describes the molecular mechanisms that underlie an increase in the strength of synaptic transmission. The role sAPPα may play in the induction and maintenance of LTP has not previously been addressed in vivo. Therefore, the aim of this thesis was to investigate whether sAPPα affects the induction of LTP in the hippocampus of the anaesthetised rat. The present findings are the first to suggest that sAPPα may modulate the induction of LTP in vivo. Decreasing the function of endogenous sAPPα (with sAPPα-binding antibodies and a pharmacological inhibition of α-secretase) significantly reduced the magnitude of LTP induced in the dentate gyrus. Therefore, the reduction of sAPPα during AD is likely to have a detrimental impact on the mechanisms of synaptic plasticity, and by extension, learning and memory. The present investigation has also found that the application of recombinant, purified sAPPα to the rat hippocampus has an �inverted U-shaped� dose-response effect on the magnitude of LTP. Low concentrations of sAPPα significantly enhanced LTP, supporting previous findings that exogenous sAPPα can facilitate in vitro LTP and enhance memory performance in animals. On the other hand, comparatively high concentrations of sAPPα significantly decreased the magnitude of LTP. This observation is also consistent with previous findings, in which high concentrations of sAPPα have been shown to be less synaptogenic and memory enhancing than lower doses. These results are the first to suggest that sAPPα modulates in vivo synaptic plasticity, and have important implications for the development of strategies to treat AD.
|
144 |
Heterosynaptic metaplasticity in area CA1 of the hippocampusHulme, Sarah R, n/a January 2009 (has links)
Long-term potentiation (LTP) is an activity-dependent increase in the efficacy of synaptic transmission. In concert with long-term depression (LTD), this synaptic plasticity likely underlies some types of learning and memory. It has been suggested that for LTP/LTD to act as effective memory storage mechanisms, homeostatic regulation is required. This need for plasticity regulation is incorporated into the Bienenstock, Cooper and Munro (BCM) theory by a threshold determining LTD/LTP induction, which is altered by the previous history of activity (Bienenstock et al., 1982). The present work aimed to test key predictions of the BCM model. This was done using field and intracellular recordings in area CA1 of hippocampal slices from young, adult male Sprague-Dawley rats. The first prediction tested was that following a strong, high-frequency priming stimulation all synapses on primed cells will show inhibition of subsequent LTP and facilitation of LTD induction (heterosynaptic metaplasticity). This was confirmed using two independent Schaffer collateral pathways to the same CA1 pyramidal cells. Following priming stimulation to one pathway, LTP induction was heterosynaptically inhibited and LTD facilitated. To more fully investigate whether all synapses show metaplastic changes, the priming stimulation was given in a different dendritic compartment, in stratum oriens, prior to LTP induction in stratum radiatum. This experiment supported the conclusion that all synapses show inhibited LTP following priming. A second prediction of the BCM model is that metaplasticity induction is determined by the history of cell firing. To investigate this, cells were hyperpolarized during priming to completely prevent somatic action potentials. Under these conditions inhibitory priming of LTP was still observed, and thus somatic action potentials are not critical for the induction of the effect. The next aim was to determine the mechanism underlying heterosynaptic metaplasticity. One way in which plasticity induction can be altered is through changes in gamma-aminobutyric acid (GABA)-mediated inhibition of pyramidal cells. For this reason, it was tested whether blocking all GABAergic inhibition, for the duration of the experiment, would prevent priming of LTP. However, priming inhibited subsequent LTP and it was concluded that GABAergic changes do not underlie either the induction, or expression, of the metaplastic state. Proposed revisions to the BCM model predict that postsynaptic elevations in intracellular Ca�⁺ determine the induction of metaplasticity. There are many potential sources for postsynaptic Ca�⁺ elevations, including entry through N-methyl-D-asparate receptors (NMDARs) or voltage-dependent calcium channels (VDCCs), or release from intracellular stores. Results of the present work demonstrate that the inhibition of LTP is dependent on the release of Ca�⁺ from intracellular stores during priming; however this release is not triggered by Ca�⁺ entry through NMDARs or VDCCs, or via activation of metabotropic glutamate receptors. Overall, the present results show that, in accordance with the BCM model, a high level of prior activity induces a cell-wide metaplastic state, such that LTD is facilitated and LTP is inhibited. In contrast to predictions of the BCM model, this is not mediated by cell-firing during priming. Instead the release of Ca�⁺ from intracellular stores is critical for induction of the metaplastic state.
|
145 |
Brain region gene expression responds discretely to chronic alcohol withdrawal with specific disruption of the hippocampus during intoxicationBerman, Ari Ethan 28 August 2008 (has links)
Not available / text
|
146 |
The aging hippocampus : a multilevel analysis in the ratDriscoll, Ira, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
The purpose of the current thesis was twofold: (1) to examine various factors that might be contributing to age-related learning and memory deficits specifically related to the hippocampus, and (2) to validate our rat model of aging, employing a multilevel analysis. We found age-related deficits on both spatial and non-spatial hippocampus-dependent taks that were accompanied by structural alterations observed in vivo (volune, but not neuronal metabolic function) and post mortem (neuronal density and neurogenesis, but not synaptic or mitochondrial density). Furthermore, our results suggest that the observed hippocampal structural changes, named decreased volume and neurogenesis, predict learning and memory deficits, and both can be accounted for by neurogenic reduction. In addition, the above-mentioned pattern of age-related deficits closely resembles that seen in humans, suggesting the present rat version of aging to be a very useful model for investigating hippocampal aging in humans. / iii, 236 leaves : ill. (some col.) ; 29 cm.
|
147 |
A behavioural analysis of visual pattern separation ability by rats : effects of damage to the hippocampusSpanswick, Simon, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
Different events usually contain similar elements that can contribute to interference during memory encoding and retrieval. The hippocampus (HPC), a structure that is critically involved in some forms of memory, has been hypothesized to reduce interference between memories with overlapping content, thus facilitating correct recall. Pattern separation is one hypothetical process whereby input ambiguity is reduced. Here we test the hypothesis that the HPC and/or dentate gyrus (DG) are important for pattern separation by measuring performance by rats with damage in tasks that require discrimination between visual stimuli that share systematically varying numbers of common elements. Rats with HPC damage were slower to resolve discriminations with minimal degrees of overlap. Lesions of the DG did not affect the ability of rats to deal with overlap, suggesting a dissociation between the HPC and DG. Our results provide partial support for the idea that the HPC contributes to the pattern separation process. / ix, 84 leaves : ill. ; 29 cm.
|
148 |
Multiple-object memory requires the hippocampusYim, Tonia Tan-Ling, University of Lethbridge. Faculty of Arts and Science January 2007 (has links)
This thesis investigates the role of the hippocampus in object memory. Currently,
the role of the hippocampus in object recognition is unclear, with some studies
demonstrating a delay-dependent impairment after hippocampal damage, others showing
no impairment. The present thesis used the novel object recognition task and its variants
to investigate various types of object memory in hippocampal lesion rats. In the first
study, impairments were observed in discriminating object order and associating objects
with contexts, while no impairment was observed in novel object recognition. In the
second study, it was found that encountering another object shortly prior to or after
encountering a target object impairs the recognition of the target object. In a control
procedure, encountering a novel context either shortly before or after encountering the
target object did not impair object recognition. In sum, in the absence of the hippocampus,
object memory becomes vulnerable to interference, rendering rats unable to discern
memories of multiple objects. The present thesis concludes that the hippocampus
discriminates multiple objects via pattern separation. A stimulus-response model relating
the role of the hippocampus to object memory is proposed. / vii, 150 leaves : ill. ; 29 cm. --
|
149 |
Differential neurogenesis in the adult rat dentate gyrusMelvin, Neal, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
Adult neurogenesis is a fundamental feature of mammalian nervous systems.
Curiously, neurogenesis in the dentate gyrus is typically regarded as homogenous. This
thesis challenges that view, and reports the discovery and characterization of a novel
region of the dentate gyrus that consistently lacks basal neurogenesis. We demonstrate
that this area, referred to as the neurogenically quiescent zone, represents approximately
1.5% of the total volume of the dentate gyrus, and that its location is invariant among
animals. This region contains several critical cell types and molecular factors that are
known to be critical to the neurogenic niche, including stem cells. We also present data
that attempt to conceptualize the existence of this region in the context of early agerelated
declines in neurogenesis. Finally, we demonstrate that, under some behavioural
conditions, neurogenesis can be induced in this region, suggesting that, under basal
conditions, it may simply lack the presence of pro-neurogenic factors. / xvi, 125 leaves : ill. ; 29 cm. --
|
150 |
Interactions of the hippocampus and non-hippocampal long-term memory systems during learning, remembering, and over timeSparks, Fraser T January 2012 (has links)
The hippocampus and non-hippocampal long-term memory systems each have the capacity
to learn and express contextual fear memory. How these systems interact during learning
and remembering revolves around hippocampal mediated interference, where the hippocampus
dominates for both the acquisition and expression of long-term memory. Hippocampal
interference during learning can be overcome by modifying learning parameters
such that learning is distributed across multiple independent sessions. The standard view of
the role of the hippocampus in long-term memory retrieval is that it is temporally limited,
where recently acquired memory is dependent on hippocampal function though as a memory
ages, dependency is transferred to other memory systems by a process called systems
consolidation. Distributed training demonstrates that learning parameters create a memory
that is resistant to hippocampal damage. We find little evidence to support temporally based
systems consolidation, and present data that supports the view that if the hippocampus is
initially involved in learning a memory, it will always be necessary for accurate retrieval
of that memory. A critical assessment of the rat literature revealed that initial memory
strength, and/or lesion techniques might be responsible for the few studies that report temporally
graded retrograde amnesia using contextual fear conditioning. Our experiments
designed to directly test these possibilities resulted in flat gradients, providing further evidence
that the hippocampus plays a permanent role in long-term memory retrieval. We
propose and assess alternatives to the standard model and conclude that a dual store model
is most parsimonious within the presented experiments and related literature. Interactions
of the hippocampus and non-hippocampal systems take place at the time of learning and
remembering, and are persistent over time. / xvi, 161 leaves : ill. (some col.) ; 29 cm
|
Page generated in 0.0619 seconds