• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis of an epigenetic regulator in mouse embryonic stem cell self-renewal and differentiation / Analyse eines epigenetischen Regulators bei der Selbsterneuerung und Differenzierung muriner embryonaler Stammzellen

Lubitz, Sandra 10 January 2006 (has links) (PDF)
Mammals have two orthologs, Mll and Trx2, for the Drososphila protein Trithorax (TRX), which is the founding member of the trithorax group (TrxG) of epigenetic regulators. TrxG proteins are characterized by an evolutionary conserved SET domain. A major function of all SET domain- containing proteins is to modulate gene activity, but the underlying mechanisms are poorly understood. Apparently TRX, Mll and Trx2 are histone H3 lysine 4 specific methyltransferases. So far all evidence points to roles in expression of specific target genes. However, target genes and function of the epigenetic regulator Trx2 were still unknown. Homozygous trx2 mutant embryos arrest in development because of severe and widespread defects {Glaser, 2005 #296}. Thus mouse embryonic stem (ES) cells carrying a null mutation of trx2 were used as an alternative model system to address the implication of Trx2 in differentiation. This study showed that Trx2 is redundant for ES cell self-renewal. Homozygous trx2 knockout ES cells did not exhibit cell cycle defects. However, loss of Trx2 resulted in reduced proliferation and increased apoptosis rates in trx2-/- ES cells. Due to the fact that differentiation requires an appropriate rate of population growth, trx2-/- cells were affected adversely upon in vitro differentiation. Neurogeneic differentiation of trx2 mutant cells generated fewer mature neurons than wild type cells. Moreover a temporal delay in the developmental progression to differentiation became apparent. Cardiac differentiation of trx2-/- cells confirmed the developmental defect and temporal delay. Notably differentiation of trx2-/- cells was merely delayed or impaired but it was not absent, implying that Trx2 is not required for gene expression programs specific for neurons or cardiac myocytes. We propose that differentiation of trx2-/- ES cells is impaired because apoptosis is disturbing differentiation. Apart from analyzing the phenotype of trx2 mutant cells, this work was focused on the identification of Trx2 target genes. Oligonucleotide expression arrays were used to identify genes whose expression levels were affected by the absence of Trx2. In general, loss of Trx2 function resulted in more genes with decreased than increased expression levels. This is consistent with the hypothesis that Trx2 functions as a transcriptional activator. Comparison of gene expression profiles for constitutive and conditional trx2 mutant cells enabled a distinction between direct and indirect target genes for Trx2. As a result Magoh2 was identified as the key candidate target gene for Trx2. Interaction between Trx2 and Magoh2 suggested a potential regulatory role for Trx2 in alternative splicing. Furthermore this work provided evidence that Trx2 could be involved in the maintenance of CpG island promoter gene expression, thus providing a potent regulatory mechanism for ubiquitously expressed genes.
2

Analysis of an epigenetic regulator in mouse embryonic stem cell self-renewal and differentiation

Lubitz, Sandra 06 December 2005 (has links)
Mammals have two orthologs, Mll and Trx2, for the Drososphila protein Trithorax (TRX), which is the founding member of the trithorax group (TrxG) of epigenetic regulators. TrxG proteins are characterized by an evolutionary conserved SET domain. A major function of all SET domain- containing proteins is to modulate gene activity, but the underlying mechanisms are poorly understood. Apparently TRX, Mll and Trx2 are histone H3 lysine 4 specific methyltransferases. So far all evidence points to roles in expression of specific target genes. However, target genes and function of the epigenetic regulator Trx2 were still unknown. Homozygous trx2 mutant embryos arrest in development because of severe and widespread defects {Glaser, 2005 #296}. Thus mouse embryonic stem (ES) cells carrying a null mutation of trx2 were used as an alternative model system to address the implication of Trx2 in differentiation. This study showed that Trx2 is redundant for ES cell self-renewal. Homozygous trx2 knockout ES cells did not exhibit cell cycle defects. However, loss of Trx2 resulted in reduced proliferation and increased apoptosis rates in trx2-/- ES cells. Due to the fact that differentiation requires an appropriate rate of population growth, trx2-/- cells were affected adversely upon in vitro differentiation. Neurogeneic differentiation of trx2 mutant cells generated fewer mature neurons than wild type cells. Moreover a temporal delay in the developmental progression to differentiation became apparent. Cardiac differentiation of trx2-/- cells confirmed the developmental defect and temporal delay. Notably differentiation of trx2-/- cells was merely delayed or impaired but it was not absent, implying that Trx2 is not required for gene expression programs specific for neurons or cardiac myocytes. We propose that differentiation of trx2-/- ES cells is impaired because apoptosis is disturbing differentiation. Apart from analyzing the phenotype of trx2 mutant cells, this work was focused on the identification of Trx2 target genes. Oligonucleotide expression arrays were used to identify genes whose expression levels were affected by the absence of Trx2. In general, loss of Trx2 function resulted in more genes with decreased than increased expression levels. This is consistent with the hypothesis that Trx2 functions as a transcriptional activator. Comparison of gene expression profiles for constitutive and conditional trx2 mutant cells enabled a distinction between direct and indirect target genes for Trx2. As a result Magoh2 was identified as the key candidate target gene for Trx2. Interaction between Trx2 and Magoh2 suggested a potential regulatory role for Trx2 in alternative splicing. Furthermore this work provided evidence that Trx2 could be involved in the maintenance of CpG island promoter gene expression, thus providing a potent regulatory mechanism for ubiquitously expressed genes.

Page generated in 0.0843 seconds