• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ultrashort Light Sources from High Intensity Laser-Matter Interaction

Köhler, Christian 31 May 2012 (has links) (PDF)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons. The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression. Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements. Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
2

Ultrashort Light Sources from High Intensity Laser-Matter Interaction

Köhler, Christian 21 May 2012 (has links)
The thesis deals with the development and characterization of new light sources, which are mandatory for applications in atomic and molecular spectroscopy, medical and biological imaging or industrial production. For that purpose, the employment of interactions of high intensity ultra-short laser pulses with gaseous media offers a rich variety of physical effects which can be exploited. The effects are characterized by a nonlinear dependency on the present light fields. Therefore, accurate modeling of the nonlinearities of the gas is crucial. In general, the nonlinearities are due to the electronic response of the gas atoms to the light field and one distinguishes between the response of bound and ionized electrons. The first part investigates laser pulse self compression, where the consideration of a purely bound electron response is sufficient. We apply an exotic setup with an negative Kerr nonlinearity in order to avoid spatial collapse of the beam on the cost of dealing with an highly dispersive nonlinearity. Analytical analysis and numerical simulations prove the possibility of laser pulse compression in such setups and reveals a new compression scheme, where the usually disturbing dispersion of the nonlinaerity is responsible for compression. Dealing with tera-Hertz generation by focusing an ionizing two-color laser pulse into gas, the second part exploits a medium nonlinearity caused by ionized electrons. We reveal in a mixed analytical and numerical analysis the underlying physical mechanism for THz generation: ionized electrons build up a current, which radiates. Thereby, the the two-color nature of the input laser is crucial for the emitted radiation to be in the tera-Hertz range. Combining this physical model with a pulse propagation equation allows us to achieve remarkable agreement with experimental measurements. Finally, the third part deals with nonlinearities from bound as well from ionized electrons on a fundamental level. We advance beyond phenomenological models for responses of bound and ionized electrons and quantum mechanically model the interaction of an ultra-short laser pulse with a gas. Already the simplest case of one dimensional hydrogen reveals basic features. For low intensities, the Kerr nonlinearity excellently describes the response of bound electrons. For increasing intensity, ionization becomes important and the response from ionized electrons is the governing one for high intensities. This quantum mechanical correct modeling allows us to explain saturation and change of sing of the nonlinear refractive index and to deduce suited approximate models for optical nonlinearities.
3

Plasma dynamics between laser-induced breakdown and relativistically induced transparency: An investigation of high-intensity laser-solid interactions by time-resolved off-harmonic optical shadowgraphy

Bernert, Constantin Andreas 10 May 2024 (has links)
Laser-plasma-based ion accelerators are becoming a versatile platform to drive different fields of applied research and life sciences, for example translational research in radiation oncology. To ensure stable accelerator performance, complete control over the ion source, i.e., the high-intensity laser-solid interaction, is required. However, idealized interaction conditions are almost impossible to reach, as the utilized high-power lasers always feature a non-negligible amount of light preceding the laser peak. This leading edge of the laser pulse usually exceeds the ionization potential of bound electrons much earlier than the arrival of the high-power laser peak and the solid-density target undergoes significant modifications even before the actual high-intensity laser-plasma interaction starts. Control over this so-called target pre-expansion is a key requirement to achieve quantitative agreement between numerical simulations and experiments of high-intensity laser-solid interactions. This thesis investigates several aspects that are relevant to improve the capability of simulations to model realistic experimental scenarios. The corresponding experiments are conducted with cryogenic hydrogen-jet targets and the DRACO-PW laser at peak intensities between 10^12 W/cm^2 and 10^21 W/cm^2 . The experimental implementation of time-resolved optical-probing diagnostics and technical innovations with respect to the technique of off-harmonic optical probing overcome the disturbances by parasitic plasma self-emission and allow for unprecedented observations of the target evolution during the laser-target interactions. The laser-induced breakdown of solids, i.e., the phase transition from the solid to the plasma state, can be considered as an heuristic starting point of high-intensity laser-solid interactions. As it is highly relevant to simulations of target pre-expansion, Chapter 3 of this thesis presents time-resolved measurements of laser-induced breakdown in laser-target interactions at peak intensities between 0.6 * 10^21 W/cm^2 and 5.7 * 10^21 W/cm^2 . By increasing the peak intensity, a lowering of the applicable threshold intensity of laser-induced breakdown well below the appearance intensity of barrier-suppression ionization occurs. The observation demonstrates the relevance of the pulse-duration dependence of laser-induced breakdown and laser-induced damage threshold to the starting point of high-intensity laser-solid interactions. To apply the results to other laser-target assemblies, we provide a detailed instruction of how to pinpoint the starting point by comparing measurements of the laser contrast with a characterization study of the target-specific thresholds of laser-induced breakdown at low laser intensity. Chapter 4 of this thesis presents an example of how optical-probing diagnostics are able to estimate target pre-expansion as a starting condition for particle-in-cell simulations. The measurement allows to restrict the surface gradient of the pre-expanded plasma density to an exponential scalelength between 0.06 um and 0.13 um. Furthermore, the plasma-expansion dynamics induced by the ultra-relativistic laser peak are computed and post-processed by ray-tracing simulations. A comparison to the experimental results yields that the formation of the measured shadowgrams is governed by refraction in the plasma-density gradients and that the observed volumetric transparency of the target at 1.4 ps after the laser peak is not caused by relativistically induced transparency but by plasma expansion into vacuum instead. Chapter 5 of this thesis shows that a precise adjustment of the target density to the arrival of the ultra-relativistic laser peak by all-optical target-density tailoring in combination with the low solid density of the cryogenic hydrogen-jet target allows to explore the laser-target interaction in the nearcritical density regime. The chapter presents an experimental demonstration of all-optical target-density tailoring by isochoric heating via ultra-short laser pulses with a dimensionless vector potential a_0 ∼ 1. A hybrid of hydrodynamics and ray-tracing simulations allows to determine the evolution of the full target-density distribution after isochoric heating. Finally, the utilization of the method as a testbed platform to experimentally benchmark collisional particle-in-cell simulations is proposed and an experimental exploration of future possibilities of all-optical target-density tailoring is given. / Laser-Plasma-basierte Ionenbeschleuniger stellen einer vielseitigen Plattform für verschiedene Bereiche der angewandten Forschung und der Biowissenschaften dar, z. B. für die translationale Forschung in der Strahlentherapie. Um eine stabile Beschleunigerleistung zu gewährleisten, muss die Ionenquelle, d. h. die Wechselwirkung zwischen dem Hochintensitätslaser und einem Festkörper, vollständig kontrolliert sein. Idealisierte Wechselwirkungsbedingungen können jedoch fast nie erreicht werden, da die verwendeten Hochleistungslaser immer eine nicht zu vernachlässigende Lichtmenge vor der Spitze des Laserpulses aufweisen. Diese vorangehende Flanke des Laserpulses überschreitet Intensitäten, welche zur Ionisation gebundener Elektronen führen, in der Regel schon wesentlich eher als das die Spitze des Hochleistungslaserpulses eintrifft. Der Festkörper unterliegt deshalb noch vor der eigentlichen hochintensiven Wechselwirkung erheblichen Modifikationenen durch die vorangehende Flanke. Die Kontrolle dieser so genannten Vorexpansion ist eine wichtige Voraussetzung für die quantitative Übereinstimmung zwischen numerischen Simulationen und Experimenten von Wechselwirkungen zwischen hochintensiven Lasern und Festkörpern. Diese Arbeit untersucht mehrere Aspekte, welche für die Verbesserung von Simulationen realistischer experimenteller Szenarien relevant sind. Die entsprechenden Experimente werden mit Festkörpern aus kryogenen Wasserstoff und dem DRACO PW Laser mit Intensitäten zwischen 10^12 W/cm^2 und 10^21 W/cm^2 durchgeführt. Die experimentelle Implementierung zeitaufgelöster optischer Mikroskopie und technische Innovationen für die Technik der optischen Untersuchung abseits der Harmonischen des Lasers (off-harmonic optical probing) überwinden Störungen durch parasitäre Selbstemission des Plasmas und ermöglichen bisher unerreichte Beobachtungen der Evolution des Plasmas. Die laserinduzierte Zerstörschwelle des Festkörpers, d.h. der Phasenübergang vom festen Aggregatzustand in den Plasmazustand, kann als heuristischer Anfangszeitpunkt der Wechselwirkung eines hochintensiven Lasers mit einem Festkörper betrachtet werden. Da dies für Simulationen der Vorexpansion von großer Bedeutung ist, werden in Kapitel 3 dieser Arbeit zeitaufgelöste Messungen der laserinduzierten Zerstörung von Festkörpern in Wechselwirkungen mit Laserpulsen, deren Spitzenintensität zwischen 0.6 * 10^21 W/cm^2 und 5.7 * 10^21 W/cm^2 liegt, präsentiert. Durch die Erhöhung der Spitzenintensität kommt es zu einer Absenkung der anwendbaren laserinduzierten Zerstörschwellintensität deutlich unter die Erscheinungsintensität (appearance intensity) der Ionisation mittels Absenkung des Coulomb Potentials (barrier-suppression ionization). Die Beobachtung demonstriert die Relevanz der Pulsdauerabhängigkeit von Messungen laserinduzierter Zerstörschwellen auch für den Anfangszeitpunkt von Wechselwirkungen zwischen Festkörpern und hochintensiven Laserpulsen. Um die Ergebnisse auf die Wechselwirkung anderer Kombinationen von Lasern und Festkörpern anwenden zu können, stellen wir eine detaillierte Anleitung zur Bestimmung des Anfangszeitpunkts der Vorexpansion dar, welche auf dem Vergleich der Messungen des Laserkontrasts mit einer Charakterisierungsstudie der spezifischen laserinduzierten Zerstörschwellen bei niedriger Laserintensität basiert. Kapitel 4 dieser Arbeit präsentiert ein Beispiel, wie mit Hilfe der zeitaufgelösten optischen Mikroskopie die Vorexpansion als Ausgangsbedingung für Teilchen-in-Zellen (particle-in-cell) Simulationen abgeschätzt werden kann. Die Messungen erlauben es, den Oberflächengradienten der vorexpandierten Plasmadichte auf eine exponentielle Skalenlänge zwischen 0.06 μm und 0.13 μm einzugrenzen. Darüber hinaus wird die Plasmaexpansionsdynamik, welche durch die hochintensive Spitze des Laserpulses induzierte wird, berechnet und durch Lichtstrahlverfolgungssimulationen (ray-tracing simulations) nachbearbeitet. Ein Vergleich mit den experimentellen Ergebnissen zeigt, dass die Erzeugung der gemessenen Schattenbilder durch Brechung in den Dichtegradienten des Plasmas bestimmt ist und, dass die beobachtete volumetrische Transparenz des Plasmas 1.4 ps nach der Spitze des Laserpulses nicht durch relativistisch induzierte Transparenz, sondern durch Plasmaexpansion in das umliegende Vakuum verursacht wird. Abschließend zeigt Kapitel 5 dieser Arbeit, dass eine präzise Anpassung der Plasmadichte zum Zeitpunkt des Eintreffens der hochintensiven Spitzenintensität durch eine gezielte optisch-induzierte Plasmaexpansion in Kombination mit der niedrigen initialen Festkörperdichte des kryogenen Wasserstoffs die Untersuchung von Wechselwirkungen im nahkritischen Dichtebereich ermöglicht. Das Kapitel stellt eine experimentelle Demonstration der gezielten optisch induzierten Plasmaexpansion durch isochores Heizen mittels ultrakurzer Laserpulse mit einem dimensionslosen Vektorpotential a_0 ∼ 1 vor. Ein Hybrid aus Hydrodynamik- und Lichtstrahlverfolgungssimulationen ermöglicht es, die zeitliche Entwicklung der gesamten Dichteverteilung des Plasmas nach dem isochoren Heizen zu bestimmen. Abschließend präsentiert das Kapitel ein Konzept, um die Methode als Testplattform für die experimentelle Überprüfung von kollisionalen Teilchen-in-Zellen Simulationen zu nutzen und es werden die Ergebnisse einer experimentellen Untersuchung zu zukünftigen Möglichkeiten der Methode dargelegt.

Page generated in 0.0713 seconds