Spelling suggestions: "subject:"verzweigte copolymere"" "subject:"verzweigte bipolymere""
11 |
Synthesis and characterization of hyperbranched poly(urea-urethane)sAbd Elrehim, Mona Hassan Mohammed 16 July 2004 (has links)
The thesis aims to synthesize hyperbranched poly(urea-urethane) polymers (HPU) in one-pot method using commercially available monomers which are 2,4-toluylene diisocyanate (TDI) as aromatic diisocyanate and isophorone diisocyanate (IPDI) and 2(3-isocyanatopropyl) cyclohexylisocyanate (IPCI) as aliphatic diisocyanates. Those proposed diisocyanates were reacted with diethanolamine (DEA) or diisopropanolamine (DIPA). Conditions of polymerisation reactions were optimised. Complete structural analysis using 1H and 13C NMR for the obtained aromatic polymers was carried out. Degree of branching up to 70% was calculated. Aliphatic polymers have spectra with overlapped signals therefore, no full structural analysis was possible. Molar masses were determined using SEC/RI detector which shows that the prepared polymers have Mw values between 1600 g/mol and 106000 g/mol. Thermal analysis for different polymer systems showed that aliphatic HPU are more thermally stable and have values of glass transition temperature higher than aromatic ones. Modification of the end groups in the prepared hyperbranched polymers was carried out using three different modifiers and degree of modification up to 100%. Linear polymers based on the same diisocyanate monomers were prepared to compare the properties of hyperbranched systems with their linear analogs. Measurements of solution viscosity showed that HPU have lower solution viscosity values than their linear analogs of comparable molar masses. Rheological measurement of some polymer samples of different systems were carried out and showed that our hyperbranched systems exhibit a more elastic behavior than the linear polymers. Surface studies for thin films prepared from different polymer systems (hyperbranched, linear and modified) were carried out and the obtained thin films were characterized using light microscope, microglider, GC-MS, and AFM. Contact angle measurements showed that HPU have a relatively hydrophilic character. The modified polymers have higher contact angle values than the unmodified ones due to the lack of OH end groups. Networks based on aliphatic and aromatic HPU were prepared through the reaction of HPU with trimer of 1,6-diisocyanatohexane and characterised by DSC, GC-MS, DMA and AFM. The domain size in aromatic networks was found to be larger than in aliphatic networks. Tensile test was carried out and it was found that aliphatic network is more elastic than aromatic one.
|
12 |
Ni(II)-NTA-modifizierte dendritische Glycopolymere als Trägersysteme für Antigen-Peptide in Zell-basierter ImmuntherapieHauptmann, Nicole 11 November 2013 (has links)
Dendritische Polymere werden im zunehmenden Maße als nicht-virale Vektoren für virus- oder tumor-assoziierte Antigen-Peptide zur Entwicklung neuer immuntherapeutischer Strategien eingesetzt. Diese beruhen auf der Verwendung von dendritischen Zellen (DCs), welche Schlüsselzellen bei der Induktion und Aufrechterhaltung einer T-Zell-basierten Immunantwort darstellen. Im Rahmen dieser Arbeit wurden Nitrilotriessigsäure-funktionalisierte dendritische Glycopolymere (NTA-DG) für den Transport von Antigen-Peptiden in DCs etabliert. Die Ni(II)-NTA-DGs waren durch definierte Komplexierungs- und Freisetzungseigenschaften charakterisiert. So wurde das Antigen-Peptid bei einem pH-Wert unter 6 vom polymeren Träger freigesetzt. Die gebildeten Polyplexe, zwischen Ni(II)-NTA-DG und dem Antigen-Peptid, bewirkten eine Erhöhung der Antigen-Peptid-Aufnahme in immaturen DCs (iDCs). Dieses war nach der Endozytose im frühen endosomalen und lysosomalen Kompartiment von iDCs lokalisiert. Somit kann das Antigen-Peptid am MHC Klasse II-Molekül im lysosomalen Kompartiment ohne sterische Hinderungen durch die Polymeroberfläche binden. Die Polyplexe bewirkten eine Aktivierung der iDCs durch Aufregulation der kostimulatorischen Moleküle CD86 und CD80 sowie der pro-inflammatorischen Zytokine IL-6 und IL-8. Weiterhin wurde die Migrationsfähigkeit und das pro-inflammatorische Potential der Antigen-Peptid enthaltenen maturen DCs (mDCs) aufrechterhalten. Somit stellen Ni(II)-NTA-DGs ein vielversprechendes polymeres Trägersystem für Antigen-Peptide dar.
|
13 |
Hochverzweigte Polymere als chromatographische SelektorenTripp, Sandra 06 January 2015 (has links) (PDF)
Moderne analytische Verfahren ermöglichen eine höchst effiziente Auftrennung und eine selektive Detektion von Zielanalyten. Dies ist vor allem in der Medizin von Bedeutung, da eine frühzeitige Diagnose von Krankheiten in den meisten Fällen zu einer wesentlich erfolgreicheren Behandlung beiträgt. In unserer heutigen Industriegesellschaft werden daher hochsensitive und effiziente Analysemethoden stärker benötigt als je zuvor. Diverse Umweltgifte oder gesundheitliche Schadstoffe gelangen vermehrt in Grundwasser und Umwelt. Eine Analyse ist aufgrund der oft nur geringen Konzentrationen und der Komplexität diverser Proben häufig mit großen Schwierigkeiten verbunden.
Obwohl die Sensitivität und Effizienz zur Bestimmung von Krankheitsmarkern (Biomarker) und Schadstoffen immer weiter zunimmt, stoßen selbst höchstsensitive Analysemethoden an ihre Grenzen. Gerade bei kleinsten Konzentrationen an Zielanalyten oder bei komplexen Gemischen ist eine direkte Detektion ohne weitere Vorbehandlung, wie Aufkonzentrierungen oder Markierungen, äußerst schwierig oder nicht möglich.
Eine Optimierung dieser Methoden, deren Automatisierung sowie sensitivere Detektorsysteme werden benötigt. Darüber hinaus ist die Entwicklung von neuartigen, selektiveren mobilen und stationären Phasen ein hochinteressantes und umfangreich untersuchtes Forschungsgebiet.
Die Verwendung von hochselektiven Additiven, wie Cyclodextrinen, Kronenethern, Mizellen und andere chirale Selektoren in der Hochleistungsflüssigkeitschromatographie (HPLC), Kapillarelektrophorese (CE)[1,2] oder in der Dünnschicht-Chromatographie (TLC)[3] wurde bereits umfangreich untersucht und etabliert. Hochfunktionalisierte Polymere als äußerst spezifische Selektoren mit hoher Selektivität stellen vielversprechende Materialien dar, die ebenfalls eine Optimierung in der HPLC und CE erzielen.[4-9] Der Einsatz von Polymeren in molekular geprägten Matrizen (molecular imprinted polymers, MIP) oder in monolithischen Trennsäulen wird bereits äußerst erfolgreich in der TLC, HPLC und CE genutzt.[7-11] Eine solch hochselektive Säulenmodifizierung bietet eine sehr gute Performance und hervorragende Trennleistungen. Ein Nachteil dieser hochselektiven Modifizierung ist jedoch die Spezialisierung nur auf das jeweilige Problem.
Eine universelle Verwendung für komplexe Gemische und eine Fülle von Analyten ist limitiert. Ein sehr vielversprechender Aspekt ist der Einsatz von Polymeren als chirale Selektoren in der stationären wie auch in der mobilen Phase. Die große Anzahl an kommerziell erhältlichen Trennsäulen mit einer Polymermodifizierung und das ständig umfangreichere Angebot solcher Säulen[12] verdeutlichen diesen Trend und zeigen, dass die Nutzung von polymeren Architekturen für eine weitere Optimierung diverse Möglichkeiten bietet.
Hochverzweigte Polymere stellen unter den Polymeren vielversprechende Materialien dar, die aufgrund ihrer Vorteile zu einer effektiven Optimierung beitragen können.[12] Die hohe Anzahl an terminalen Gruppen ermöglichen es, gut zugängliche anwendungsorientierte Modifizierungen durchzuführen, um gewünschte Eigenschaften zu generieren. Durch die hohe Variabilität der Polymere selbst und der diversen Modifizierungsmöglichkeiten zeigen maßgeschneiderte Polymere ein enormes Potential und die Möglichkeit hochselektive Wechselwirkungen mit Zielanalyten zu etablieren.
Die Modifizierung mit einer Schale um den polymeren Kern ermöglicht weitere Optimierungen für den Einsatz von Kern-Schale-Architekturen. Beispiele hierfür sind unter anderem die Vermittlung höherer Löslichkeit durch eine Modifizierung des hydrophilen/hydrophoben polymeren Kerns zur Etablierung einer äußeren Schale. Ebenso können durch die Modifizierung gezielte Eigenschaften generiert werden, die eine spezifische Interaktion mit Oberflächen oder Wirkstoffen ermöglichen.
Die Zielsetzung dieser Arbeit ist die Synthese und die Untersuchung von Kern-Schale-Architekturen als chromatographische Selektoren. Als polymerer Kern wird hochverzweigtes Poly(ethylenimin) (PEI) verwendet, das mit einer Oligosaccharidschale modifiziert wird. Das PEI wird mit den Kerngrößen 5 und 25 kDa verwendet, wodurch eine Untersuchung des Kerneinflusses möglich ist. Weiterhin wird die Dichte der Oligosaccharidschale eingestellt. Dafür wird eine dichte, moderate bis offene und eine sehr offene Oligosaccharidschale um den polymeren Kern generiert. Infolge dessen kann der Einfluss der Schalendichte auf die Interaktion mit Beispielanalyten evaluiert werden. Für die Oligosaccharidschale (OS) werden darüber hinaus drei verschiedene Oligosaccharide (Maltose, Lactose und Maltotriose) verwendet, um den Einfluss der Art der Schale zu prüfen. Durch diese Variationen können 15 unterschiedliche PEI-OS Kern-Schale-Architekturen synthetisiert und untersucht werden. Weiterhin soll der hydrophobe Anteil der Kern-Schale-Architekturen durch die Anbindung von unpolaren Seitenketten an einen PEI-Kern erhöht werden. Auf diese Art und Weise können nicht-kovalente Wechselwirkungen mit lipophilen Systemen untersucht werden.
Um polymere Kern-Schale-Architekturen möglichst effizient in der TLC, HPLC und CE einsetzen zu können, ist es essentiell, ihre Eigenschaften und die Art und Weise der Wechselwirkungen zu kennen, die sie mit möglichen Gastmolekülen eingehen. Durch die Untersuchung dieser Wechselwirkungen können Informationen über deren Interaktionen und eine mögliche Manipulation bzw. Optimierung dieser erhalten werden. Ein zielgerichteter und effektiver Einsatz mit diesen Kern-Schale Architekturen kann so vorbereitet werden.
[1] T. J. Ward, K. D. Ward, Anal. Chem. 2012, 84, 626-35.
[2] W. J. Cheong, S. H. Yang, F. Ali, J. Sep. Sci. 2013, 36, 609-28.
[3] M. D. Bubba, L. Checchini, L. Lepri, Anal. Bioanal. Chem. 2013, 405, 533-554.
[4] M. Hanson, K. K. Unger, Trends Anal. Chem. 1992, 11, 368-373.
[5] J. Kirkland, J. Chromatogr. A 2004, 1060, 9-21.
[6] F. Gasparrini, D. Misiti, R. Rompietti, C. Villani, J. Chromatogr. A 2005, 1064, 25-38.
[7] A. Martin-Esteban, Trends Anal. Chem. 2013, 45, 169-181.
[8] I. Nischang, J. Chromatogr. A 2013, 1287, 39-58.
[9] R. D. Arrua, M. Talebi, T. J. Causon, E. F. Hilder, Anal. Chim. Acta 2012, 738, 1-12.
[10] P. Jandera, J. Chromatogr. A 2013, 1313, 37-53.
[11] F. Svec, J. Sep. Sci. 2004, 27, 1419-1430.
[12] M. Tang, J. Zhang, S. Zhuang, W. Liu, Trends Anal. Chem. 2012, 39, 180-194.
|
14 |
Hochverzweigte Polymere als chromatographische SelektorenTripp, Sandra 25 November 2014 (has links)
Moderne analytische Verfahren ermöglichen eine höchst effiziente Auftrennung und eine selektive Detektion von Zielanalyten. Dies ist vor allem in der Medizin von Bedeutung, da eine frühzeitige Diagnose von Krankheiten in den meisten Fällen zu einer wesentlich erfolgreicheren Behandlung beiträgt. In unserer heutigen Industriegesellschaft werden daher hochsensitive und effiziente Analysemethoden stärker benötigt als je zuvor. Diverse Umweltgifte oder gesundheitliche Schadstoffe gelangen vermehrt in Grundwasser und Umwelt. Eine Analyse ist aufgrund der oft nur geringen Konzentrationen und der Komplexität diverser Proben häufig mit großen Schwierigkeiten verbunden.
Obwohl die Sensitivität und Effizienz zur Bestimmung von Krankheitsmarkern (Biomarker) und Schadstoffen immer weiter zunimmt, stoßen selbst höchstsensitive Analysemethoden an ihre Grenzen. Gerade bei kleinsten Konzentrationen an Zielanalyten oder bei komplexen Gemischen ist eine direkte Detektion ohne weitere Vorbehandlung, wie Aufkonzentrierungen oder Markierungen, äußerst schwierig oder nicht möglich.
Eine Optimierung dieser Methoden, deren Automatisierung sowie sensitivere Detektorsysteme werden benötigt. Darüber hinaus ist die Entwicklung von neuartigen, selektiveren mobilen und stationären Phasen ein hochinteressantes und umfangreich untersuchtes Forschungsgebiet.
Die Verwendung von hochselektiven Additiven, wie Cyclodextrinen, Kronenethern, Mizellen und andere chirale Selektoren in der Hochleistungsflüssigkeitschromatographie (HPLC), Kapillarelektrophorese (CE)[1,2] oder in der Dünnschicht-Chromatographie (TLC)[3] wurde bereits umfangreich untersucht und etabliert. Hochfunktionalisierte Polymere als äußerst spezifische Selektoren mit hoher Selektivität stellen vielversprechende Materialien dar, die ebenfalls eine Optimierung in der HPLC und CE erzielen.[4-9] Der Einsatz von Polymeren in molekular geprägten Matrizen (molecular imprinted polymers, MIP) oder in monolithischen Trennsäulen wird bereits äußerst erfolgreich in der TLC, HPLC und CE genutzt.[7-11] Eine solch hochselektive Säulenmodifizierung bietet eine sehr gute Performance und hervorragende Trennleistungen. Ein Nachteil dieser hochselektiven Modifizierung ist jedoch die Spezialisierung nur auf das jeweilige Problem.
Eine universelle Verwendung für komplexe Gemische und eine Fülle von Analyten ist limitiert. Ein sehr vielversprechender Aspekt ist der Einsatz von Polymeren als chirale Selektoren in der stationären wie auch in der mobilen Phase. Die große Anzahl an kommerziell erhältlichen Trennsäulen mit einer Polymermodifizierung und das ständig umfangreichere Angebot solcher Säulen[12] verdeutlichen diesen Trend und zeigen, dass die Nutzung von polymeren Architekturen für eine weitere Optimierung diverse Möglichkeiten bietet.
Hochverzweigte Polymere stellen unter den Polymeren vielversprechende Materialien dar, die aufgrund ihrer Vorteile zu einer effektiven Optimierung beitragen können.[12] Die hohe Anzahl an terminalen Gruppen ermöglichen es, gut zugängliche anwendungsorientierte Modifizierungen durchzuführen, um gewünschte Eigenschaften zu generieren. Durch die hohe Variabilität der Polymere selbst und der diversen Modifizierungsmöglichkeiten zeigen maßgeschneiderte Polymere ein enormes Potential und die Möglichkeit hochselektive Wechselwirkungen mit Zielanalyten zu etablieren.
Die Modifizierung mit einer Schale um den polymeren Kern ermöglicht weitere Optimierungen für den Einsatz von Kern-Schale-Architekturen. Beispiele hierfür sind unter anderem die Vermittlung höherer Löslichkeit durch eine Modifizierung des hydrophilen/hydrophoben polymeren Kerns zur Etablierung einer äußeren Schale. Ebenso können durch die Modifizierung gezielte Eigenschaften generiert werden, die eine spezifische Interaktion mit Oberflächen oder Wirkstoffen ermöglichen.
Die Zielsetzung dieser Arbeit ist die Synthese und die Untersuchung von Kern-Schale-Architekturen als chromatographische Selektoren. Als polymerer Kern wird hochverzweigtes Poly(ethylenimin) (PEI) verwendet, das mit einer Oligosaccharidschale modifiziert wird. Das PEI wird mit den Kerngrößen 5 und 25 kDa verwendet, wodurch eine Untersuchung des Kerneinflusses möglich ist. Weiterhin wird die Dichte der Oligosaccharidschale eingestellt. Dafür wird eine dichte, moderate bis offene und eine sehr offene Oligosaccharidschale um den polymeren Kern generiert. Infolge dessen kann der Einfluss der Schalendichte auf die Interaktion mit Beispielanalyten evaluiert werden. Für die Oligosaccharidschale (OS) werden darüber hinaus drei verschiedene Oligosaccharide (Maltose, Lactose und Maltotriose) verwendet, um den Einfluss der Art der Schale zu prüfen. Durch diese Variationen können 15 unterschiedliche PEI-OS Kern-Schale-Architekturen synthetisiert und untersucht werden. Weiterhin soll der hydrophobe Anteil der Kern-Schale-Architekturen durch die Anbindung von unpolaren Seitenketten an einen PEI-Kern erhöht werden. Auf diese Art und Weise können nicht-kovalente Wechselwirkungen mit lipophilen Systemen untersucht werden.
Um polymere Kern-Schale-Architekturen möglichst effizient in der TLC, HPLC und CE einsetzen zu können, ist es essentiell, ihre Eigenschaften und die Art und Weise der Wechselwirkungen zu kennen, die sie mit möglichen Gastmolekülen eingehen. Durch die Untersuchung dieser Wechselwirkungen können Informationen über deren Interaktionen und eine mögliche Manipulation bzw. Optimierung dieser erhalten werden. Ein zielgerichteter und effektiver Einsatz mit diesen Kern-Schale Architekturen kann so vorbereitet werden.
[1] T. J. Ward, K. D. Ward, Anal. Chem. 2012, 84, 626-35.
[2] W. J. Cheong, S. H. Yang, F. Ali, J. Sep. Sci. 2013, 36, 609-28.
[3] M. D. Bubba, L. Checchini, L. Lepri, Anal. Bioanal. Chem. 2013, 405, 533-554.
[4] M. Hanson, K. K. Unger, Trends Anal. Chem. 1992, 11, 368-373.
[5] J. Kirkland, J. Chromatogr. A 2004, 1060, 9-21.
[6] F. Gasparrini, D. Misiti, R. Rompietti, C. Villani, J. Chromatogr. A 2005, 1064, 25-38.
[7] A. Martin-Esteban, Trends Anal. Chem. 2013, 45, 169-181.
[8] I. Nischang, J. Chromatogr. A 2013, 1287, 39-58.
[9] R. D. Arrua, M. Talebi, T. J. Causon, E. F. Hilder, Anal. Chim. Acta 2012, 738, 1-12.
[10] P. Jandera, J. Chromatogr. A 2013, 1313, 37-53.
[11] F. Svec, J. Sep. Sci. 2004, 27, 1419-1430.
[12] M. Tang, J. Zhang, S. Zhuang, W. Liu, Trends Anal. Chem. 2012, 39, 180-194.
|
Page generated in 0.0483 seconds