• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural and Electrical Transport Properties of Doped Nd-123 Superconductors

Ghorbani, Shaban Reza January 2003 (has links)
It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentrationpin the CuO2planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba2Cu3O7−δ, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric powerS, and Hall coefficient RH.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.Sas a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence ofSis obtained.So me important results are following: (i)The valence of Pr in the RE-123 family.Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)Hole localization. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr+4site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)Competition between added charge and disorder. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO2planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found. <b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa2Cu3O7−δ, hole concentration,substitution.
2

Structural and Electrical Transport Properties of Doped Nd-123 Superconductors

Ghorbani, Shaban Reza January 2003 (has links)
<p>It is generally believed that one of the key parameterscontrolling the normal state and superconducting properties ofhigh temperature superconductors is the charge carrierconcentration<i>p</i>in the CuO<sub>2</sub>planes.By changing the non-isovalent dopingconcentration on the RE site as well as the oxygen content in(RE)Ba<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, an excellent tool is obtained tovary the hole concentration over a wide range from theunderdoped up to the overdoped regime.In the present thesis thefocus is on the doping effects on the structural and normalstate electrical properties in Nd-123 doped with Ca, La, Pr,Ca-Pr, and Ca-Th.T he effects of doping have been investigatedby X-ray and neutron powder diffraction, and by measurements ofthe resistivity, thermoelectric power<i>S</i>, and Hall coefficient R<sub>H</sub>.T he thermoelectric power is a powerful tool forstudies of high temperature superconductivity and is highlysensitive to details of the electronic band structure.<i>S</i>as a function of temperature has been analyzed in twodifferent two band models.The parameters of these models arerelated to charactristic features of the electron bands and asemiempirical physical description of the doping dependence of<i>S</i>is obtained.So me important results are following:</p><p>(i)<i>The valence of Pr in the RE-123 family.</i>Results from thestructural investigations, the critical temperature Tc, and thethermoelectric power indicated a valence +4 at low dopingconcentration, which is in agreement with results of chargeneutral doping in the RE-123 family.(ii)<i>Hole localization</i>. The results of bond valence sum (BVS)calculations from neutron diffraction data showed that holelocalization on the Pr<sup>+4</sup>site was the main reason for the decrease of thehole concentration p.Differ ent types of localization wereinferred by S measurements for Ca-Th and Ca-Pr dopings.(iii)<i>Competition between added charge and disorder</i>. Theresults of RH measurements indicated that Ca doping introduceddisorder in the CuO<sub>2</sub>planes in addition to added charge.This could bethe main reason for the observed small decrease of thebandwidth of the density of states in the description of aphenomenological narrow band model.(iv) Empirical parabolic relation between γ and p.S data were analyzed and well described by a two-band modelwith an additional linear T term, γT.An empiricalparabolic relation for γ as a function of holeconcentration has been found.</p><p><b>Key words:</b>high temperature superconductors, criticaltemperature, resistivity, thermoelectric power, Hallcoefficient, X-ray diffraction, Neutron diffraction, NdBa<sub>2</sub>Cu<sub>3</sub>O<sub>7−δ</sub>, hole concentration,substitution.</p>

Page generated in 0.1533 seconds