• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 903
  • 78
  • 51
  • 38
  • 37
  • 16
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1249
  • 566
  • 566
  • 566
  • 550
  • 549
  • 439
  • 385
  • 360
  • 338
  • 321
  • 316
  • 315
  • 308
  • 297
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Seismic constraints on the processes and consequences of secondary igneous evolution of Pacific oceanic lithosphere

Feng, Helen Shao-Hwa January 2016 (has links)
Thesis: Ph. D., Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2016. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references. / This thesis examines the structure of Pacific oceanic lithosphere that has been modified by post-formation magmatism in order to better understand the processes of secondary magmatic evolution of the lithosphere, which can have global-scale implications for oceanic and atmospheric chemistry. In the western Pacific, widespread Cretaceous magmatism has modified oceanic lithosphere over hundreds of millions of square kilometers. Seismic models of the upper crust from within the Jurassic Quiet Zone and the crust and upper mantle near the Mariana Trench reveal crust that is locally thickened via focused extrusive volcanism and crust that is modestly but uniformly thickened over broad regions. These distinct modes of magmatic emplacement suggest the operation of both focused and diffuse modes of melt transport through the lithosphere. Analysis of seismic observations from Guaymas Basin, in the Gulf of California, endeavor to advance our understanding of sill-driven alteration of sediments, an important consequence of secondary magmatism. We show that seismically imaged physical disruption to sediments due to igneous sill intrusion can be related to changes in sediment physical properties that reflect alteration processes. We also show how sill thickness can be estimated, enabling alteration intensity to be related to sill thickness in a variety of settings. / by Helen Shao-Hwa Feng. / Ph. D.
322

Emergent patterns of diversity and dynamics in natural populations of planktonic Vibrio bacteria

Thompson, Janelle Renée, 1976- January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and, the Woods Hole Oceanographic Institution), 2005. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references. / Despite the importance of microorganisms for global and engineering processes, currently lacking is a theoretical framework to describe how the structure of a microbial assemblage translates an environmental condition into a system-level response. Prerequisite to developing such a framework is an understanding of how microbial diversity is partitioned into functional groups of organisms. This thesis has explored the organization and dynamics of microbial diversity within coastal bacterioplankton using the genus Vibrio as a model system. Vibrios are ubiquitous marine bacteria, and include a variety of pathogens. Quantification of Vibrio environmental dynamics by cultivation- independent quantitative PCR and constant denaturant capillary electrophoresis (CDCE), suggests that sea surface temperature is a driving factor in the distribution and abundance of Vibrio populations and that groups of organisms with >98-99% 16S rRNA sequence similarity maintain similar responses to temperature-mediated environmental change. Fine-scale analysis of the genetic structure within one Vibrio population (>99% rRNA similarity to V. splendidus) reveals vast co-occurring genomic diversity. The average concentration of unique genome-types is observed to be 1000-fold lower than the total population size and individual genomes vary in gene content by as much as 1.1 Mb (the equivalent of -1,000 genes). It is proposed that competition between individual genome variants is a weak driver of population genetic structure while stochastic interactions in the water column promote genetic heterogeneity rendering much of the observed diversity in natural populations neutral or effectively neutral. / (cont.) Quantification of Vibrio diversity and dynamics is critical to understanding the global factors that determine the prevalence and proliferation of disease-causing strains and their potential contribution to ecosystem-level processes such as organic matter degradation and macronutrient cycling. In addition, an understanding of how diversity is organized in natural assemblages is an important step in the effort to predict the characteristics of microbial systems based upon their component populations. / by Janelle Renée Thompson. / Ph.D.
323

Structure, function and context : the impact of morphometry and ecology on olfactory sensitivity / Impact of morphometry and ecology on olfactory sensitivity

Hammock, Jennifer, 1974- January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and, the Woods Hole Oceanographic Institution), 2005. / Handwritten on CDROMS: v. [1]. Appendix, histological images -- v. [2]. CT images. -- Table of contents refers to CDROMS as: Appendix and CT and histological images for all species, attached CD) / Includes bibliographical references (v. 2, leaves 216-247). / In this thesis, the relationships of olfactory sensitivity to three biological variables were tested. The sensitivity of a marine mammal, the sea otter (Enhydra lutris) was measured in order to determine whether a marine lifestyle results in impaired olfaction. The effect of dietary relevance on sensitivity to specific odorants was evaluated. Finally, a new morphometric model of olfactory uptake efficiency was developed and tested against behavioral measurements of olfactory sensitivity in twelve mammalian species from five orders. Olfactory thresholds were obtained for the first time from two sea otters for seven odorant compounds from various natural sources. Otters were trained using operant conditioning to participate in direct behavioral testing. Sea otter olfactory sensitivity was comparable to that of previously studied terrestrial mammals. The incidence of an odorant in the diet of the olfactor was found to influence specific sensitivity to that compound but to varying degrees among different mammalian orders. Nasal cavity specimens were measured using radiologic (CT scan) and histologic (light microscopy) techniques. Surface areas and volumes of the nasal cavity were used to calculate the Olfactory Uptake Efficiency (OUE). OUE is significantly related to olfactory bulb volume. A possible relationship was found between OUE and general olfactory sensitivity. / by Jennifer Hammock. / Ph.D.
324

Mitochondrial genomics and northwestern Atlantic population genetics of marine annelids

Jennings, Robert M. (Robert Michael) January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references. / The overarching goal of this thesis was to investigate marine benthic invertebrate phylogenetics and population genetics, focused on the phylum Annelida. Recent expansions of molecular methods and the increasing diversity of available markers have allowed more complex and fine-scale questions to be asked at a variety of taxonomic levels. At the phylogenetic level, whole mitochondrial genome sequencing of two polychaetes (the deep-sea tubeworm Riftia pachyptila and the intertidal bamboo worm Clymenella torquata) supports the placement of leeches and oligochaetes within the polychaete radiation, in keeping with molecular evidence and morphological reinvestigations. This re-interpretation, first proposed by others, synonomizes "Annelida" and "Polychaeta", and lends further support to the inclusion of echiurids, siboglinids (previously called vestimentiferans) within annelids, and sipunculans as close allies. The complete mt-genome of C. torquata was then rapidly screened to obtain markers useful in short timescale population genetics. / (cont.) Two quickly evolving mitochondrial markers were sequenced from ten populations of C. torquata from the Bay of Fundy to New Jersey to investigate previous hypotheses that the Cape Cod, MA peninsula is a barrier to gene flow in the northwest Atlantic. A barrier to gene flow was found, but displaced south of Cape Cod, between Rhode Island and Long Island, NY. Imposed upon this pattern was a gradient in genetic diversity presumably due to previous glaciation, with northern populations exhibiting greatly reduced diversity relative to southern sites. These trends in C. torquata, combined with other recent short time scale population genetic research, highlight the lack of population genetics models relevant to marine benthic invertebrates. To this end, I constructed a model including a typical benthic invertebrate life cycle, and described the patterns of genetic differentiation at the juvenile and adult stages. Model analysis indicates that selection operating at the post- settlement stage may be extremely important in structuring genetic differentiation between populations and life stages. Further, it demonstrates how combined genetic analysis of sub-adult and adult samples can provide more information about population dynamics than either could alone. / by Robert M. Jennings. / Ph.D.
325

Molecular insights into the niche of harmful brown tides

Wurch, Louie L. (Louie Lorne) January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Recurrent brown tide blooms caused by the harmful alga Alureococcus anophagefferens have decimated coastal ecosystems and shellfisheries along the Eastern U.S and South Africa. The exact mechanisms controlling bloom formation, sustenance, and decline are unclear, however bottom-up factors such as nutrient type and supply are thought to be critical. Traditional assays for studying algal nutrient physiology require bulk community measurements or in situ nutrient perturbations. Although useful, these techniques lack the ability to target individual species in complex, mixed microbial assemblages. The motivation for this thesis is to examine the metabolic strategies utilized by A. anophagefferens for meeting its nitrogen (N) and phosphorus (P) demand at the cellular level using molecular tools that, even in the presence of complex microbial assemblages, can be used to track how nutrients influence the bloom dynamics of A. anophageferens in the environment. Chapter two examines the global transcriptional responses of A. anophagefferens to N and P deficiency. Results demonstrate that A. anophagefferens has the capacity to utilize multiple forms of organic N and P when inorganic forms become unavailable. Chapter three analyzed the global protein changes in response to P deficiency and P re-supply. Consistent with transcript patterns, A. anophagefferens increases protein abundance for a number of genes involved in inorganic and organic P metabolism when inorganic P is deficient. Furthermore, increases in a sulfolipid biosynthesis protein combined with lipid data suggest A. anophagefferens can adjust its P requirement by switching from phospholipids to sulfolipids when inorganic P is unavailable. Analysis of protein abundances from Pdeficient cells that were re-fed inorganic P demonstrates variations in the timing of turnover among various proteins upon release from phosphate deficiency. Chapter four tests the expression patterns of candidate gene markers of nutrient physiology under controlled culture experiments. Results show that expression patterns of a phosphate transporter and xanthine/uracil/vitamin C permease are indicators of P and N deficiency, respectively. Taken together, these findings provide insight into the fundamental and ecological niche space of this harnful algal species with respect to N and P and provide a platform for assaying nutrient controls on natural brown tide blooms. / by Louie L. Wurch. / Ph.D.
326

Hydrological and biogeochemical cycling along the Greenland ice sheet margin

Bhatia, Maya Pilar, 1979- January 2012 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Global warming has led to a significant increase in Greenland ice sheet (GrIS) melt and runoff since 1990, resulting in escalated export of fresh water and associated sediment to the surrounding North Atlantic and Arctic Oceans. Similar to alpine glacial systems, surface meltwater on ice sheet surface drains to the base (subglacial) where it joins a drainage system and can become chemically enriched from its origin as dilute snow- and ice-melt. In this thesis, I examine the interdependence of glacial hydrology and biogeochemical cycling in terms of export of carbon and iron from the Greenland ice sheet. I develop a new isotope mixing-model to quantify water source contributions to the bulk meltwater discharge draining a GrIS outlet glacier. Results illustrate (a) the new application of a naturally occurring radioisotope (radon-222) as a quantitative tracer for waters stored at the glacier bed, and (b) the seasonal evolution of the subglacial drainage network from a delayed-flow to a quick-flow system. Model results also provide the necessary hydrological context to interpret and quantify glacially-derived organic carbon and iron fluxes. I combine bulk- and molecular-level studies of subglacial organic carbon to show that GrIS discharge exports old (radiocarbon depleted), labile organic matter. Similar investigations of dissolved and particulate iron reveal that GrIS discharge may be a significant flux of labile iron to the North Atlantic Ocean during the summer meltseason. Both carbon and iron are subject to proglacial processing prior to export to the marine environment, and exhibit strong seasonal variability in correlation with the subglacial drainage evolution. Low, chemically concentrated fluxes characterize the spring discharge, whereas higher, chemically dilute fluxes typify the summer discharge. Collectively, this thesis provides some of the first descriptions and flux estimates of carbon and iron, key elements in ocean biogeochemical cycles, in GrIS meltwater runoff. / by Maya Pilar Bhatia. / Ph.D.
327

Development of a "genome-proxy" microarray for profiling marine microbial communities, and its application to a time series in Monterey Bay, California

Rich, Virginia Isabel January 2008 (has links)
Thesis (Ph. D.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2008. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 155-181). / This thesis describes the development and application of a new tool for profiling marine microbial communities. Chapter 1 places the tool in the context of the range of methods used currently. Chapter 2 describes the development and validation of the "genome proxy" microarray, which targeted marine microbial genomes and genome fragments using sets of 70-mer oligonucleotide probes. In a natural community background, array signal was highly linearly correlated to target cell abundance (R² of 1.0), with a dynamic range from 10²-10⁶ cells/ml. Genotypes with >/=~80% average nucleotide identity to those targeted crosshybridized to target probesets but produced distinct, diagnostic patterns of hybridization. Chapter 3 describes the development an expanded array, targeting 268 microbial genotypes, and its use in profiling 57 samples from Monterey Bay. Comparison of array and pyrosequence data for three samples showed a strong linear correlation between target abundance using the two methods (R²=0.85- 0.91). Array profiles clustered into shallow versus deep, and the majority of targets showed depth-specific distributions consistent with previous observations. Although no correlation was observed to oceanographic season, bloom signatures were evident. Array-based insights into population structure suggested the existence of ecotypes among uncultured clades. Chapter 4 summarizes the work and discusses future directions. / by Virginia Rich. / Ph.D.
328

Biology and potential biogeochemical impacts of novel predatory flavobacteria

Banning, Erin C. (Erin Charles) January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 147-160). / Predatory bacteria are ubiquitous in aquatic environments and may be important players in the ecology and biogeochemistry of microbial communities. Three novel strains belonging to two genera of marine flavobacteria, Olleya and Tenacibaculum, were cultured from coastal sediments and found to be predatory on other bacteria on surfaces. Two published species of the genus Tenacibaculum were also observed to grow by lysis of prey bacteria, raising the possibility that predation may be a widespread lifestyle amongst marine flavobacteria, which are diverse and abundant in a variety of marine environments. The marine flavobacterial clade is known to include species capable of photoheterotrophy, scavenging of polymeric organic substances, pathogenesis on animals, the degradation and lysis of phytoplankton blooms and, now, predation on bacterial communities. Strains from the two genera were found to exhibit divergent prey specificities and growth yields when growing predatorily. Olleya sp. predatory cells accumulated to an order of magnitude greater cell densities than Tenacibaculum sp. cells on equivalent prey cell densities. Experiments were conducted to constrain the potential of the novel isolates to affect prey communities under more environmentally relevant conditions. An investigation of the minimum number of predatory cells needed to generate clearings of prey cells found that the inoculation of individual predatory flavobacteria cells can ultimately result in dense lytic swarms. In some cases, the susceptibility of particular prey species to lysis by a flavobacterial predator was found to vary based on the growth state of the prey cells or the presence of their spent growth media. A novel methodology for the experimental study of biofilms was used to assess the impact of exposure to predatory marine flavobacteria on the release of macronutrients from prey biofilms. The Olleya sp. predator had a stimulative effect on macronutrient release while the Tenacibaculum sp. did not, further suggesting the two groups of predators are adapted to different ecological niches. / by Erin C. Banning. / Ph.D.
329

Form, function and flow in the plankton : jet propulsion and filtration by pelagic tunicates / Jet propulsion and filtration by pelagic tunicates

Sutherland, Kelly Rakow January 2010 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 91-99). / Trade-offs between filtration rate and swimming performance among several salp species with distinct morphologies and swimming styles were compared. Small-scale particle encounter at the salp filtering apparatus was also explored. Observations and experiments were conducted at the Liquid Jungle Lab, off the pacific coast of Panama in January 2006 through 2009. First, time-varying body volume was calculated by digitizing salp outlines from in situ video sequences. The resulting volume flow rates were higher than previous measurements, setting an upper limit on filtration capacity. Though each species possessed a unique combination of body kinematics, normalized filtration rates were comparable across species, with the exception of significantly higher rates in Weelia cylindrica aggregates, suggesting a tendency towards a flow optimum. Secondly, a combination of in situ dye visualization and particle image velocimetry (PIV) measurements were used to describe properties of the jet wake and swimming performance variables including thrust, drag and propulsive efficiency. All species investigated swam via vortex ring propulsion. Though Weelia cylindrica was the fastest swimmer, Pegea confoederata was the most efficient, producing the highest weight-specific thrust and wholecycle propulsive efficiency. Weak swimming performance parameters in Cyclosalpa afinis, including low weight-specific thrust and low propulsive efficiency, may be compensated by comparatively low energetic requirements. / (cont.) Finally, a low Reynolds number mathematical model using accurately measured parameters and realistic oceanic particle size concentrations showed that submicron particles are encountered at higher rates than larger particles. Results from feeding experiments with 0.5, 1 and 3 [mu]m po- lystyrene microspheres corroborated model predictions. Though 1 to 10 pm-sized particles (e.g. flagellates, small diatoms) are predicted to provide four times as much carbon as 0.1 to 1 pm- sized particles (e.g. bacteria, Prochlorococcus), particles smaller than the mesh size (1.4 [mu]m) can still fully satisfy salp energetic needs. / by Kelly Rakow Sutherland. / Ph.D.
330

Iron and Prochlorococcus/

Thompson, Anne Williford January 2009 (has links)
Thesis (Ph. D.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2009. / Includes bibliographical references. / Iron availability and primary productivity in the oceans are intricately linked through photosynthesis. At the global scale we understand how iron addition induces phytoplankton blooms through meso-scale iron-addition experiments. At the atomic scale, we can describe the length and type of bonds that connect iron atoms to components of photosystem I, the most efficient light-harvesting complex in nature. Yet, we know little of how iron influences microbial diversity and distribution in the open ocean. In this study, we assess the influence of iron on the ecology of the numerically abundant marine cyanobacterium, Prochlorococcus. With its minimal genome and ubiquity in the global ocean, Prochlorococcus represents a model system in which to study the dynamics of the link between iron and primary productivity. To this end, we tested the iron physiology of two closely-related Prochlorococcus ecotypes. MED4 is adapted to high-light environments while MIT9313 lives best in low-light conditions. We determined that MIT9313 is capable of surviving at low iron concentrations that completely inhibit MED4. Furthermore, concentrations of Fe' that inhibit growth in culture are sufficient to support Prochlorococcus growth in the field, which raises questions about the species of iron available to Prochlorococcus. We then examined the molecular basis for the ability of MIT9313 to grow at lower iron concentrations than MED4 by assessing whole-genome transcription in response to changes in iron availability in the two ecotypes. / Genes that were differentially expressed fell into two categories: those that are shared by all (Prochlorococcus core genome) and those that are not (non-core genome). Only three genes shared between MED4 and MIT9313 were iron-responsive in both strains. We then tested the iron physiology of picocyanobacteria in the field and found that Synechococcus is iron-stressed in samples where Prochlorococcus is not. Finally, we propose a method to measure how iron stress in Prochlorococcus changes over natural gradients of iron in the oligotrophic ocean by quantifying transcription of the iron-stress induced gene, isiB. Taken together, our studies demonstrate that iron metabolism influences the ecology of Prochlorococcus both by contributing to its diversity and distinguishing it from other marine cyanobacteria. / by Anne Williford Thompson. / Ph.D.

Page generated in 0.0577 seconds