• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 904
  • 78
  • 51
  • 38
  • 37
  • 16
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 1251
  • 566
  • 566
  • 566
  • 550
  • 549
  • 439
  • 385
  • 360
  • 338
  • 321
  • 316
  • 315
  • 308
  • 297
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

XDSC : Excitonic Dye Solar Cells

Unger, Eva January 2012 (has links)
Solar energy is the foremost power source of our planet. Driving photosynthesis on our planet for 3 billion years the energy stored in the form of fossil fuels also originates from the sun. Consumption of fossil fuels to generate energy is accompanied with CO2 emission which affects the earth's climate in a serious manner. Therefore, alternative ways of converting energy have to be found. Solar cells convert sunlight directly into electricity and are therefore an important technology for future electricity generation. In this work solar cells based on the inorganic semiconductor titanium dioxide and hole-transporting dyes are investigated. These type of solar cells are categorized as hybrid solar cells and are conceptually related to both dye-sensitized solar cells and organic solar cells. Light absorption in the bulk of the hole-transporting dye layer leads to the formation of excitons that can be harvested at the organic/inorganic interface. Two design approaches were investigated: 1) utilizing a multilayer of a hole-transporting dye and 2) utilizing a hole-transporting dye as light harvesting antenna to another dye which is bound to the titanium dioxide surface.  Using a multiple dye layer in titanium dioxide/hole transporting dye devices, leads to an improved device performance as light harvested in the consecutive dye layers can contribute to the photocurrent. In devices using both an inteface-bound dye and a hole-transporting dye, excitation energy can be transferred from the hole-transporting dye to the interface dye.
352

Computational Studies and Design of Biomolecular Diels-Alder Catalysis

Linder, Mats January 2012 (has links)
The Diels-Alder reaction is one of the most powerful synthetic tools in organic chemistry, and asymmetric Diels-Alder catalysis allows for rapid construction of chiral carbon scaffolds. For this reason, considerable effort has been invested in developing efficient and stereoselective organo- and biocatalysts. However, Diels-Alder is a virtually unknown reaction in Nature, and to engineer an enzyme into a Diels-Alderase is therefore a challenging task. Despite several successful designs of catalytic antibodies since the 1980’s, their catalytic activities have remained low, and no true artificial ’Diels-Alderase’ enzyme was reported before 2010. In this thesis, we employ state-of-the-art computational tools to study the mechanism of organocatalyzed Diels-Alder in detail, and to redesign existing enzymes into intermolecular Diels-Alder catalysts. Papers I–IV explore the mechanistic variations when employing increasingly activated reactants and the effect of catalysis. In particular, the relation between the traditionally presumed concerted mechanism and a stepwise pathway, forming one bond at a time, is probed. Papers V–X deal with enzyme design and the computational aspects of predicting catalytic activity. Four novel, computationally designed Diels-Alderase candidates are presented in Papers VI–IX. In Paper X, a new parameterization of the Linear Interaction Energy model for predicting protein-ligand affinities is presented. A general finding in this thesis is that it is difficult to attain large transition state stabilization effects solely by hydrogen bond catalysis. In addition, water (the preferred solvent of enzymes) is well-known for catalyzing Diels- Alder by itself. Therefore, an efficient Diels-Alderase must rely on large binding affinities for the two substrates and preferential binding conformations close to the transition state geometry. In Papers VI–VIII, we co-designed the enzyme active site and substrates in order to achieve the best possible complementarity and maximize binding affinity and pre-organization. Even so, catalysis is limited by the maximum possible stabilization offered by hydrogen bonds, and by the inherently large energy barrier associated with the [4+2] cycloaddition. The stepwise Diels-Alder pathway, proceeding via a zwitterionic intermediate, may offer a productive alternative for enzyme catalysis, since an enzyme active site may be more differentiated towards stabilizing the high-energy states than for the standard mechanism. In Papers I and III, it is demonstrated that a hydrogen bond donor catalyst provides more stabilization of transition states having pronounced charge-transfer character, which shifts the preference towards a stepwise mechanism. Another alternative, explored in Paper IX, is to use an α,β -unsaturated ketone as a ’pro-diene’, and let the enzyme generate the diene in situ by general acid/base catalysis. The results show that the potential reduction in the reaction barrier with such a mechanism is much larger than for conventional Diels-Alder. Moreover, an acid/base-mediated pathway is a better mimic of how natural enzymes function, since remarkably few catalyze their reactions solely by non-covalent interactions. / <p>QC 20120903</p>
353

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly

Saeed, Ahmed 2012 May 1900 (has links)
In this study, a novel concept for a downhole flywheel energy storage module to be embedded in a bottom-hole-assembly (BHA) is presented and modeled, as an alternative power source to existing lithium-ion battery packs currently deployed in measurement-while-drilling (MWD) or logging-while-drilling (LWD) operations. Lithium-ion batteries disadvantages include deteriorated performance in high temperature, limited lifetime that necessitates frequent replacement which elevates operational costs, and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel module should adhere to the geometric constraints of the wellbore and its corresponding BHA. Hence, a flywheel sizing procedure was developed that takes into consideration the required energy to be stored, the surrounding environmental conditions, and the geometric constraints. A five-axis magnetic levitation control system was implemented and tuned to maintain continuous suspension of the flywheel under the harsh lateral, axial and torsional drilling vibrations of the BHA. Thus, an integrated finite element model was developed that included the rotordynamic behavior of the flywheel and the BHA, the component dynamics of the magnetic levitation control system, and the cutting dynamics of the drillbit for both PDC and tricone types. The model also included a newly developed coupling between lateral, axial and torsional vibrations. It was demonstrated through simulations conducted by numerical integration that the flywheel maintains levitation due to all different types of external vibration as well as its own lateral vibration due to mass unbalance. Moreover, a passive proof-mass-damper (PPMD) was developed that suppresses axial bit-bounce vibrations as well as torsional vibrations, and was extended to also mitigate lateral vibrations. Optimized values of the mass, stiffness and damping values of the PPMD were obtained by the hybrid analytical-numerical Chebyshev spectral method that was superior in computational efficiency to iterative numerical integration. This also enabled the fine-plotting of an operating stability chart indicating stability regions where bit-bounce and stick-slip are avoided. The proof-mass-damping concept was extended to the flywheel to be an active proof-mass-damper (APMD) where simulations indicated functionality for a light-weight BHA.
354

Red EL Properties of OLED Having Hole Blocking Layer

LEE, Duck-Chool, MIZUTANI, Teruyoshi, MORI, Tatsuo, KIM, Hyeong-Gweon 20 July 2000 (has links)
No description available.
355

Emergence and Phenomenology in Quantum Gravity

Premont-Schwarz, Isabeau January 2010 (has links)
In this thesis we investigate two approaches to quantum gravity. The first is the emergence of gravity from a discrete fundamental theory, and the second is the direct quantisation of gravity. For the first we develop tools to determine with relatively high accuracy the speed of propagation of information in collective modes which ultimately should give us some information about the emergent causal structure. We found a way of finding the dependence on the relative interaction strengths of the Hamiltonian and we also managed to calculate this speed in the case where the operators in the Hamitonian were not necessarily bounded. For the second approach, we investigated the phenomenology of Loop Quantum Gravity. We found that ultra light black holes (lighter than the Planck mass) have interesting new properties on top of being non-singular. First their horizon is hidden behind a Plancksized wormhole, second their specific heat capacity is positive and they are quasi-stable, they take an infinite amount of time evaporate. We investigated the dynamics of their collapse and evaporation explicitly seeing that not only was there no singularity, but there is also no information loss problem. Looking at how primordial black holes were in existence, we found that they might account for a significant portion of dark matter. And if they did, their radiation spectrum is such that the black holes in the dark matter halo of our galaxy could be the source for the ultra high energy cosmic rays we observe on earth.
356

Understanding the Nature of Blazars High Energy Emission with Time Dependent Multi-zone Modeling

Chen, Xuhui 06 September 2012 (has links)
In this thesis we present a time-dependent multi-zone radiative transfer code and its applications to study the multiwavelength emission of blazars. The multiwavelength variability of blazars is widely believed to be a direct manifestation of the formation and propagation of relativistic jets, and hence the related physics of the black hole - accretion disk - jet system. However, the understanding of these variability demands highly sophisticated theoretical analysis and numerical simulations. Especially, the inclusion of the light travel time effects(LTTEs) in these calculations has long been realized important, but very difficult. The code we use couples Fokker-Planck and Monte Carlo methods, in a 2 dimensional (cylindrical) geometry. For the first time all the LTTEs are fully considered, along with a proper, full, self-consistent treatment of Compton cooling, which depends on the LTTEs. Using this code, we studied a set of physical processes that are relevant to the variability of blazars, including electron injection and escape, radiative cooling, and stochastic particle acceleration. Our comparison of the observational data and the simulation results revealed that a combination of all those processes is needed to reproduce the observed behaviors of the emission of blue blazars. The simulation favors that the high energy emission at quiet and flare stages comes from the same location. We have further modeled red blazars PKS 1510-089. External radiation, which comes from the broad line region (BLR) or infrared torus, is included in the model. The results confirm that external Compton model can adequately describe the emission from red blazars. The emission from BLR is favored as the source of Inverse Compton seed photons, compared to synchrotron and IR torus radiation.
357

Instabilities in Higher-Dimensional Theories of Gravity

Hovdebo, Jordan January 2006 (has links)
A number of models of nature incorporate dimensions beyond our observed four. In this thesis we examine some examples and consequences of classical instabilities that emerge in the higher-dimensional theories of gravity which can describe their low energy phenomenology. <br /><br /> We first investigate a gravitational instability for black strings carrying momentum along an internal direction. We argue that this implies a new type of solution that is nonuniform along the extra dimension and find that there is a boost dependent critical dimension for which they are stable. Our analysis implies the existence of an analogous instability for the five-dimensional black ring. We construct a simple mode of the black ring to aid in applying these results and argue that such rings should exist in any number of space-time dimensions. <br /><br /> Next we consider a recently constructed class of nonsupersummetric solutions of type IIB supergravity which are everywhere smooth and have no horizon. We demonstrate that these solutions are all classically unstable. The instability is a generic feature of horizonless geometries with an ergoregion. We consider the endpoint of this instability and argue that the solutions decay to supersymmetric configurations. We also comment on the implications of the ergoregion instability for Mathur's 'fuzzball' proposal. <br /><br /> Finally, we consider an interesting braneworld cosmology in the Randall-Sundrum scenario constructed using a bulk space-time which corresponds to a charged AdS black hole. In particular, these solutions appear to 'bounce', making a smooth transition from a contracting to an expanding phase. By considering the space-time geometry more carefully, we demonstrate that generically in these solutions the brane will encounter a singularity in the transition region.
358

Controlling the speed of film with high precision in a line scanner / Styrning av filmhastighet med hög precision i linjescanner

Rosenius, Magnus January 2003 (has links)
In this master thesis, a system has been designed that is used to detect the perforation holes on a film in a line-scanning film scanner. The film scanner is used to scan regular film taken by high-speed cameras during tests of for example missile launches or vehicle crash tests. The system consists of a PLD that detects the perforation holes on the film using a signal from a digital line-scanning CCD camera. A main issue has been to make the detection procedure robust and independent of the different types of films encountered in real life situations. The result from the detection is used to generate control signals to the film speed regulation mechanism inside the film scanner that then regulates the velocity of the film. To make the detection and regulation more sensitive, a part-of-line precision has been developed to calculate where, inside a line, the actual hole is positioned. The system has been programmed in VHDL, synthesized, implemented and fitted into a Xilinx Spartan (XCS10-3-PC84) Field Programmable Gate Array (FPGA). The implementation has been simulated but not in real hardware.
359

Taub-NUT Spacetime in the (A)dS/CFT and M-Theory

Clarkson, Richard January 2005 (has links)
In the following thesis, I will conduct a thermodynamic analysis of the Taub-NUT spacetime in various dimensions, as well as show uses for Taub-NUT and other Hyper-Kahler spacetimes. <br /><br /> Thermodynamic analysis (by which I mean the calculation of the entropy and other thermodynamic quantities, and the analysis of these quantities) has in the past been done by use of background subtraction. The recent derivation of the (A)dS/CFT correspondences from String theory has allowed for easier and quicker analysis. I will use Taub-NUT space as a template to test these correspondences against the standard thermodynamic calculations (via the N&ouml;ether method), with (in the Taub-NUT-dS case especially) some very interesting results. <br /><br /> There is also interest in obtaining metrics in eleven dimensions that can be reduced down to ten dimensional string theory metrics. Taub-NUT and other Hyper-Kahler metrics already possess the form to easily facilitate the Kaluza-Klein reduction, and embedding such metrics into eleven dimensional metrics containing M2 or M5 branes produces metrics with interesting Dp-brane results.
360

Instabilities in Higher-Dimensional Theories of Gravity

Hovdebo, Jordan January 2006 (has links)
A number of models of nature incorporate dimensions beyond our observed four. In this thesis we examine some examples and consequences of classical instabilities that emerge in the higher-dimensional theories of gravity which can describe their low energy phenomenology. <br /><br /> We first investigate a gravitational instability for black strings carrying momentum along an internal direction. We argue that this implies a new type of solution that is nonuniform along the extra dimension and find that there is a boost dependent critical dimension for which they are stable. Our analysis implies the existence of an analogous instability for the five-dimensional black ring. We construct a simple mode of the black ring to aid in applying these results and argue that such rings should exist in any number of space-time dimensions. <br /><br /> Next we consider a recently constructed class of nonsupersummetric solutions of type IIB supergravity which are everywhere smooth and have no horizon. We demonstrate that these solutions are all classically unstable. The instability is a generic feature of horizonless geometries with an ergoregion. We consider the endpoint of this instability and argue that the solutions decay to supersymmetric configurations. We also comment on the implications of the ergoregion instability for Mathur's 'fuzzball' proposal. <br /><br /> Finally, we consider an interesting braneworld cosmology in the Randall-Sundrum scenario constructed using a bulk space-time which corresponds to a charged AdS black hole. In particular, these solutions appear to 'bounce', making a smooth transition from a contracting to an expanding phase. By considering the space-time geometry more carefully, we demonstrate that generically in these solutions the brane will encounter a singularity in the transition region.

Page generated in 0.0451 seconds