Spelling suggestions: "subject:"home."" "subject:"hope.""
371 |
The saguaro tree-hole microenvironment in southern Arizona; II, SummerSoule, Oscar Hommel, 1940- January 1964 (has links)
No description available.
|
372 |
AdS/CFT, Black Holes, And FuzzballsZadeh, Aida 09 January 2014 (has links)
In this thesis we investigate two different aspects of the AdS/CFT correspondence. We first investigate the holographic AdS/CMT correspondence. Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent z>1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. We show how to embed these solutions into AdS space for a range of values of z and d.
We next investigate the AdS3/CFT2 correspondence and focus on the microscopic CFT description of the D1-D5 system on T^4*S_1. In the context of the fuzzball programme, we investigate deforming the CFT away from the orbifold point and study lifting of the low-lying string states. We start by considering general 2D orbifold CFTs of the form M^N/S_N, with M a target space manifold and S_N the symmetric group. The Lunin-Mathur covering space technique provides a way to compute correlators in these orbifold theories, and we generalize this technique in two ways. First, we consider excitations of twist operators by modes of fields that are not twisted by that operator, and show how to account for these excitations when computing correlation functions in the covering space. Second, we consider non-twist sector operators and show how to include the effects of these insertions in the covering space.
Using the generalization of the Lunin-Mathur symmetric orbifold technology and conformal perturbation theory, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1-D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting conformal families of these operators, and computing their mixing coefficients. We find evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1-D5 SCFT must decrease away from the orbifold point while others increase.
Finally, we summarize our results and discuss some future directions of research.
|
373 |
AdS/CFT, Black Holes, And FuzzballsZadeh, Aida 09 January 2014 (has links)
In this thesis we investigate two different aspects of the AdS/CFT correspondence. We first investigate the holographic AdS/CMT correspondence. Gravitational backgrounds in d+2 dimensions have been proposed as holographic duals to Lifshitz-like theories describing critical phenomena in d+1 dimensions with critical exponent z>1. We numerically explore a dilaton-Einstein-Maxwell model admitting such backgrounds as solutions. We show how to embed these solutions into AdS space for a range of values of z and d.
We next investigate the AdS3/CFT2 correspondence and focus on the microscopic CFT description of the D1-D5 system on T^4*S_1. In the context of the fuzzball programme, we investigate deforming the CFT away from the orbifold point and study lifting of the low-lying string states. We start by considering general 2D orbifold CFTs of the form M^N/S_N, with M a target space manifold and S_N the symmetric group. The Lunin-Mathur covering space technique provides a way to compute correlators in these orbifold theories, and we generalize this technique in two ways. First, we consider excitations of twist operators by modes of fields that are not twisted by that operator, and show how to account for these excitations when computing correlation functions in the covering space. Second, we consider non-twist sector operators and show how to include the effects of these insertions in the covering space.
Using the generalization of the Lunin-Mathur symmetric orbifold technology and conformal perturbation theory, we initiate a program to compute the anomalous dimensions of low-lying string states in the D1-D5 superconformal field theory. Our method entails finding four-point functions involving a string operator O of interest and the deformation operator, taking coincidence limits to identify which other operators mix with O, subtracting conformal families of these operators, and computing their mixing coefficients. We find evidence of operator mixing at first order in the deformation parameter, which means that the string state acquires an anomalous dimension. After diagonalization this will mean that anomalous dimensions of some string states in the D1-D5 SCFT must decrease away from the orbifold point while others increase.
Finally, we summarize our results and discuss some future directions of research.
|
374 |
Emergence and Phenomenology in Quantum GravityPremont-Schwarz, Isabeau January 2010 (has links)
In this thesis we investigate two approaches to quantum gravity. The first is the emergence of gravity from a discrete fundamental theory, and the second is the direct quantisation of gravity. For the first we develop tools to determine with relatively high accuracy the speed of propagation of information in collective modes which ultimately should give us some
information about the emergent causal structure. We found a way of finding the dependence on the relative interaction strengths of the Hamiltonian and we also managed to calculate this speed in the case where the operators in the Hamitonian were not necessarily bounded.
For the second approach, we investigated the phenomenology of Loop Quantum Gravity. We found that ultra light black holes (lighter than the Planck mass) have interesting new properties on top of being non-singular. First their horizon is hidden behind a Plancksized wormhole, second their specific heat capacity is positive and they are quasi-stable, they take an infinite amount of time evaporate. We investigated the dynamics of their collapse and evaporation explicitly seeing that not only was there no singularity, but there is also no information loss problem. Looking at how primordial black holes were in existence,
we found that they might account for a significant portion of dark matter. And if
they did, their radiation spectrum is such that the black holes in the dark matter halo of our galaxy could be the source for the ultra high energy cosmic rays we observe on earth.
|
375 |
Gręžimo režimų įtaka skylių stiklo tekstolite paviršiaus kokybei / Influence of the boring regimes to the quality of the surface of holes in glass textoliteBendikas, Romas 02 July 2009 (has links)
Darbas skirtas skylių gręžimo stiklo tekstolito plokštėse kokybės užtikrinimo problemoms spręsti. Teoriškai išanalizuoti įvairūs gręžimo būdai: mechaninis, lazerinis, plazminis. Išdėstyti pagrindiniai faktoriai, lemiantys skylių kokybinius parametrus.Eksperimentinis tyrimas buvo atliekamas Tauragėje AB „Telga“, gręžimo ceche. Programinėmis gręžimo staklėmis TIMAX MDR 2002 gręžtas stiklo tekstolitas FR–4, skirtingais pjovimo režimais. Mikroskopu įvertinta įvairiais režimais ir grąžtais gautų paviršių kokybė. Išaiškinti optimalūs darbo režimai priklausomai nuo skylių kokybės keliamų reikalavimų. / This work deals with the quality problems of hole drilling in the glass textolite panels. Different drilling methods: mechanical, laser based and plasmic drilling have been analysed theoretically. The main factors, determining qualitative parameters of holes, have been stated. Experimental study has been performed in Tauragė, AB „Telga“ drilling workshop. Glass textolite FR–4 has been drilled using programmable drilling machine TIMAX MDR 2002 and applying different cutting modes. The quality of surfaces obtained after drilling by different modes and drills has been evaluated by using microscope. Optimal performance modes depending on the requirements for the quality of holes have been explored. The work consists of four parts: introduction, literature review, experimental analysis and conclusions.
|
376 |
INVESTIGATION OF DRILLING PERFORMANCE IN CRYOGENIC DRILLING ON CFRP COMPOSITE LAMINATESXia, Tian 01 January 2014 (has links)
In recent years, there has been a substantial growth in the application of carbon fiber reinforced plastic (CFRP) composite materials in automobile and aerospace industries due to their superior properties such as lightweight, high strength, excellent corrosion resistance, and minimal fatigue concerns. The present study evaluates the drilling performance of woven carbon fiber reinforced plastics under both dry and cryogenic cooling conditions using uncoated solid carbide drill with a through-hole for coolant application.
The effects of the cooling conditions and the cutting parameters on drilling performance in drilling CFRP were evaluated in terms of generated thrust force, torque, cutting edge radius, outer corner flank wear, hole quality (including surface roughness, diameter error, roundness, delamination, burr formation, sub-surface quality). Both cooling conditions and cutting parameters were found to influence the thrust force and torque at different levels. The thrust force and the torque are higher in cryogenic cooling under all cutting parameters. In most of the cases, cryogenic drilling gives better bore-hole quality with lower surface roughness, more accurate diameter, less burr generation, better sub-surface quality, etc. Also, the tool-wear rates measured in drilling shows that cryogenic drilling produces less tool-wear than dry drilling does.
|
377 |
Applications of strong gravitational lensing: utilizing nature’s telescope for the study of intermediate to high redshift galaxiesBandara, H. M. Kaushala T. 12 December 2012 (has links)
This dissertation presents a detailed analysis of the galaxy-scale strong gravitational lenses discovered by the Sloan Lens ACS (SLACS) survey, with the aim of providing new insight into the processes that affect the evolution of galaxies at intermediate and high redshift. First, we present evidence for a relationship between the supermassive black hole mass and the total gravitational mass of the host galaxy, by utilizing the fact that gravitational lensing allows us to accurately measure the inner mass density profile of early-type lens galaxies and their total masses within an aperture. These results confirm that the properties of the bulge component of early-type galaxies and the resulting supermassive black hole are fundamentally regulated by the properties of the dark matter halo. We then utilize the lensing magnification for a detailed study of the photometric properties (luminosity, size and shape) of SLACS background sources and determine the evolution of the disk galaxy luminosity-size relation since z ~ 1. A comparison of the observed SLACS luminosity-size relation to theoretical simulations provides strong evidence for mass-dependent evolution of disk galaxies since z ~ 1. Furthermore, a comparison of the SLACS luminosity-size relation to that of a non-lensing, broad-band imaging survey shows that one can probe a galaxy population that is ~ 2 magnitudes deeper by utilizing the lensing magnification. We continue the detailed study of SLACS background sources by combining the lensing magnification with diffraction-limited integral field spectroscopy to derive two-dimensional kinematic, star formation rate and metallicity distributions of gravitationally lensed galaxies at z > 0.78. Integral field spectroscopic observations of the Hα emission line properties of a SLACS source galaxy (SDSS J0252+0039), at z = 0.98, show that the lensing magnification and adaptive optics advantages can be effectively combined to derive spatially resolved kinematics and star formation rates of compact, sub-luminous galaxies. Finally, we summarize the results of this dissertation and discuss how the powerful advantages of strong gravitational lensing can be utilized to address various questions about galaxy evolution through upcoming surveys and new telescope facilities. / Graduate
|
378 |
Higher Dimensional Gravity, Black Holes and Brane WorldsCarter, Benedict Miles Nicholas January 2006 (has links)
Current research is focussed on extending our knowledge of how gravity behaves on small scales and near black hole horizons, with various modifications which may probe the low energy limits of quantum gravity. This thesis is concerned with such modifications to gravity and their implications. In chapter two thermodynamical stability analyses are performed on higher dimensional Kerr anti de Sitter black holes. We find conditions for the black holes to be able to be in thermal equilibrium with their surroundings and for the background to be stable against classical tensor perturbations. In chapter three new spherically symmetric gravastar solutions, stable to radial perturbations, are found by utilising the construction of Visser and Wiltshire. The solutions possess an anti de Sitter or de Sitter interior and a Schwarzschild (anti) de Sitter or Reissner Nordstrom exterior. We find a wide range of parameters which allow stable gravastar solutions, and present the different qualitative behaviors of the equation of state for these parameters. In chapter four a six dimensional warped brane world compactification of the Salam-Sezgin supergravity model is constructed by generalizing an earlier hybrid Kaluza Klein / Randall Sundrum construction. We demonstrate that the model reproduces localized gravity on the brane in the expected form of a Newtonian potential with Yukawa type corrections. We show that allowed parameter ranges include values which potentially solve the hierarchy problem. The class of solutions given applies to Ricci flat geometries in four dimensions, and consequently includes brane world realisations of the Schwarzschild and Kerr black holes as particular examples. Arguments are given which suggest that the hybrid compactification of the Salam Sezgin model can be extended to reductions to arbitrary Einstein space geometries in four dimensions. This work furthers our understanding of higher dimensional general relativity, which is potentially interesting given the possibility that higher dimensions may become observable at the TeV scale, which will be probed in the Large Hadron Collider in the next few years.
|
379 |
Contribution of recharge along regional flow paths to discharge at Ash Meadows, Nevada /Bushman, Michelle, January 2008 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Geological Sciences, 2008. / Includes bibliographical references.
|
380 |
Expansão de furos em chapas de aço avançado de alta resistência (DOCOL 190M)Thesing, Leandro Antônio January 2018 (has links)
Os Aços Avançados de Alta Resistência ou AHSS (do inglês Advanced High Strength Steels) apresentam muitas vantagens mecânicas em relação aos aços convencionais. Seu uso crescente na indústria automotiva deve-se principalmente à sua capacidade de possibilitar a redução de peso e, ao mesmo tempo, o aumento da segurança aos ocupantes do veículo em caso de colisões. No entanto, apresentam maiores dificuldades no que se refere à conformabilidade (maiores níveis de solicitação e desgaste das ferramentas, menor deformabilidade plástica, etc). Assim, alguns testes para avaliar a conformabilidade destes materiais ganham maior importância. É o caso do Teste de Expansão de Furos, cuja propriedade medida é a Razão de Expansão de Furos (REF). Neste trabalho investiga-se o processo de expansão de furos para o aço avançado de alta resistência (AHSS) martensítico DOCOL 190M, sob as seguintes condições de processo: duas formas de obtenção do furo (jato d’água e usinagem); duas geometrias distintas de punções (cônico de 60º e elíptico); diversos diâmetros do furo inicial; com e sem o uso de lubrificante; com acabamento diferenciado da borda do furo; e expansão com deslocamento do punção em etapas. Os experimentos demonstram que a expansão de furos possui uma estreita relação com a geometria do punção utilizado para a expansão, bem como com o diâmetro do furo inicial, acabamento da borda e condições de lubrificação. A partir dos resultados experimentais de expansão de furos foi possível realizar a calibração de um software de simulação computacional em relação ao dano crítico do material no momento da fatura na borda do furo. / Advanced High Strength Steels (AHSS) offer many mechanical advantages over conventional steels. Its increasing use in the automotive industry is mainly due to its ability to reduce weight and, at the same time, increase occupant safety in the event of collisions. However, they present greater difficulties with respect to the formability (higher levels of solicitation and wear of the tools, lower plastic formability, etc). Thus, some tests to evaluate the formability of these materials come to have greater importance. This is the case of the Hole Expansion Test, whose measured property is the Hole Expansion Ratio (REF). This work investigates the hole expansion process for a martensitic advanced high-strength steel (AHSS), DOCOL 190M, under the following process conditions: two ways of obtaining the hole (water jet and machining); two different geometries of punctures (conical of 60º and elliptical); various diameters of the initial hole; with and without the use of lubricant; with differentiated finishing of the hole edge; and expansion with punch displacement in steps. The experiments demonstrate that the hole expansion has a close relationship with the geometry of the punch used for the expansion, as well as the initial hole diameter, edge finish and lubrication conditions. From the experimental hole expansion results it was possible to carry out the calibration of a computational simulation software in relation to the critical damage of the material at the moment of hole edge rupture.
|
Page generated in 0.0812 seconds