• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 6
  • 6
  • 2
  • Tagged with
  • 32
  • 19
  • 15
  • 10
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Homologe archaeale Holliday-Struktur-auflösende Endonukleasen und ihre spezifischen Reaktionen mit cruciformer DNA

Neef, Klaus. January 2004 (has links) (PDF)
Köln, Universiẗat, Diss., 2004.
2

Structural studies of the four-way helical DNA junction

Duckett, Derek R. January 1990 (has links)
No description available.
3

Sequence dependent conformational variations in DNA holliday junctions

Hays, Franklin A. 14 April 2005 (has links)
Four-stranded DNA junctions (also known as Holliday junctions) are structural intermediates involved in a growing number of biological processes including DNA repair, genetic recombination, and viral integration. Although previous studies have focused on understanding the conformational variability and sequence-dependent formation of Holliday junctions in solution there have been relatively few insights into junction structure at the atomic level. Recent crystallographic studies have demonstrated that the more compact stacked-X junction form has an antiparallel alignment of DNA strands and standard Watson-Crick base pairs across the central crossover region. Junction formation within this crystallographic system was seen to be dependent on a common trinucleotide sequence motif ("ACC-triplet" at the 6th, 7th and 8th positions of the decanucleotide sequence d(CCnnnN₆N₇N₈GG)) containing a series of stabilizing direct and solvent-mediated hydrogen bonding interactions. This thesis addresses questions concerning the nucleotide sequence-dependent formation and conformational variability of DNA Holliday junctions as determined by single crystal x-ray diffraction. We have used the modified bases 2,6-diaminopurine and inosine to demonstrate that minor groove interactions adjacent to the trinucleotide junction core are not major contributors to overall conformation. In addition, incorporation of guanine into the sixth position of this core does not have a significant effect on junction geometry. Meanwhile, incorporation of 5-bromouracil into the eighth position perturbs the geometry in terms of the interduplex angle as well as the defined conformational variables, J[subscript roll] and J[subscript slide]. These novel junction structures demonstrate that the nucleotide sequence within the central core generates a position specific relationship between molecular interactions at the junction crossover and overall structural geometry. A systematic crystallographic screen of the trinucleotide core region is presented here as an unbiased, comprehensive, search for sequences that stabilize junctions. As the result of this screen, we can extend the core sequence motif to 'N₆Y₇C₈' where N₆ is an adenine, guanine, or cytosine nucleotide and Y₇ is either a cytosine or thymine (if N₆ = adenine) nucleotide. Using these novel junction structures, we demonstrate that base sequence within the central core has a significant effect on the overall geometry of the junction. Thus, this central region of the structure may serve as a linchpin for determining the local and global conformation and overall variability of the four-stranded DNA Holliday junction. These observations raise some interesting questions regarding the importance of this core region in biological processes such as genetic recombination. / Graduation date: 2005
4

Analyses of noncanonical DNA structures /

Khuu, Patricia A. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 90-102). Also available on the World Wide Web.
5

The RecG branch migration protein of Escherichia coli K-12

Vincent, Simon David January 1996 (has links)
No description available.
6

The RuvABC resolvasome

Ingleston, Stuart Michael January 2000 (has links)
No description available.
7

Towards construction and validation of an ends-in recombination system in <i>Escherichia coli</i>

Baxi, Kunal Sanjay 23 June 2011
Homologous recombination is the primary DNA repair pathway in bacteria and it is immensely important in repairing DNA double strand breaks. Components of the homologous recombination pathway have been well conserved throughout evolution as an essential part of cell survival. Homologous recombination plays an important role in cellular processes like DNA repair as well as exchange of genetic information through chromosomal crossover. During homologous recombination, DNA strand exchange leads to formation of a heteroduplex joint between the invading and displaced DNA strands. This hetereoduplex joint is called a Holliday Junction. Resolution of the Holliday Junction proceeds via one of two pathways. In the presence of RuvC and/or RecG, Holliday Junction resolution proceeds via a cut and paste pathway where the invading DNA strand replaces a region of homologous DNA on the target DNA. In the absence of RuvC and RecG, Holliday Junction resolution takes place via a copy and paste pathway during which DNA synthesis needs to be primed at Holliday Junction intermediates formed during strand invasion. In an effort to separate this myriad of different requirements, I have attempted to develop a novel ends-in recombination assay system using E. coli as a model organism. This ends-in system would allow recombinant molecule formation by DNA synthesis of approximately 200 to 2000 bp size interval between the two converging ends of an invading linear dsDNA substrate oriented just like the greek letter Ù, but with the arms pointing inwards. In this study, a number of linear dsDNA assay templates were constructed and analyzed. All the constructs had two arms of homology to the chromosome pointing inwards i.e. in the ends-in orientation. Using this ends-in system, it was demonstrated that the presence of chi (Crossover Hotspot Initiator) sites was an important requirement for ends-in recombination in wild type E. coli cells. Our studies also showed that ends-in homologous recombination did not occur if chi sites were placed at or very near to the ends of the incoming linear dsDNA molecule, suggesting that the chi site recognition is efficient only if the incoming dsDNA has chi sites internal to the ends. Moreover, it was shown that neither RuvC nor RecG were required for successful recombinant product formation using the ends-in assay. This finding reinforces previous observations that suggest the idea that Holliday Junctions can be resolved independent of both RuvC and RecG.
8

Topoisomerase III-alpha in Double Holliday Junction Dissolution

Chen, Stefanie Lynn Hartman January 2012 (has links)
<p>Topoisomerase III&alpha; (Top3&alpha;) is an essential component of the double Holliday junction (dHJ) dissolvasome complex in metazoans. Previous work has shown that Top3&alpha; and Bloom's helicase (Blm) are able to convergently migrate the dHJ to create solely non-crossover products, thus preserving genomic integrity. However, many questions remain about the details of this process. Using a combination of biochemical and genetic tools, including dHJ substrate assays, gel electrophoresis, EMSA, pulldowns, fly crosses, and electron microscopy, this work expands our knowledge of the dissolution reaction. Tail mutants of Top3&alpha; were created and tested in a series of <italic>in vitro</italic> assays. Through these experiments, I discovered that the C-terminus of Top3&alpha; is important for binding Blm, interacting with DNA, conveying RPA stimulation, and <italic>in vivo</italic> functionality. I also observed that dissolution is an extremely processive reaction, with no accumulation of intermediates prior to product formation. When a non-specific topoisomerase was used (Top1, a type IB), accumulation of an intermediate was evident; however, contrary to predicted models, direct observation revealed that this intermediate is not a hemicatenane structure and still requires branch migration. Modifications were also made to the dHJ substrate creation method so that multiple types of HJ substrates could be produced efficiently.</p> / Dissertation
9

Towards construction and validation of an ends-in recombination system in <i>Escherichia coli</i>

Baxi, Kunal Sanjay 23 June 2011 (has links)
Homologous recombination is the primary DNA repair pathway in bacteria and it is immensely important in repairing DNA double strand breaks. Components of the homologous recombination pathway have been well conserved throughout evolution as an essential part of cell survival. Homologous recombination plays an important role in cellular processes like DNA repair as well as exchange of genetic information through chromosomal crossover. During homologous recombination, DNA strand exchange leads to formation of a heteroduplex joint between the invading and displaced DNA strands. This hetereoduplex joint is called a Holliday Junction. Resolution of the Holliday Junction proceeds via one of two pathways. In the presence of RuvC and/or RecG, Holliday Junction resolution proceeds via a cut and paste pathway where the invading DNA strand replaces a region of homologous DNA on the target DNA. In the absence of RuvC and RecG, Holliday Junction resolution takes place via a copy and paste pathway during which DNA synthesis needs to be primed at Holliday Junction intermediates formed during strand invasion. In an effort to separate this myriad of different requirements, I have attempted to develop a novel ends-in recombination assay system using E. coli as a model organism. This ends-in system would allow recombinant molecule formation by DNA synthesis of approximately 200 to 2000 bp size interval between the two converging ends of an invading linear dsDNA substrate oriented just like the greek letter Ù, but with the arms pointing inwards. In this study, a number of linear dsDNA assay templates were constructed and analyzed. All the constructs had two arms of homology to the chromosome pointing inwards i.e. in the ends-in orientation. Using this ends-in system, it was demonstrated that the presence of chi (Crossover Hotspot Initiator) sites was an important requirement for ends-in recombination in wild type E. coli cells. Our studies also showed that ends-in homologous recombination did not occur if chi sites were placed at or very near to the ends of the incoming linear dsDNA molecule, suggesting that the chi site recognition is efficient only if the incoming dsDNA has chi sites internal to the ends. Moreover, it was shown that neither RuvC nor RecG were required for successful recombinant product formation using the ends-in assay. This finding reinforces previous observations that suggest the idea that Holliday Junctions can be resolved independent of both RuvC and RecG.
10

Targeting Holliday Junctions

Hamilton, Christopher 12 August 2014 (has links)
Holliday junctions are formed as an intermediate during DNA recombination as the two strands come together. Recombination occurs during meiosis, and also during DNA double strand repair. Trapping this branched intermediate could prevent DNA repair from occurring in cells which would prove beneficial during cancer treatment. There are many enzymes that cleave Holliday junctions. One such enzyme, T7 Endonuclease I, was specifically chosen to detect ligand binding at the core of the junction since its binding and cleavage of cruciforms is well documented. Specialized bifunctional ligands were studied in this project that were designed to bind DNA structures that are held in close proximity to one another. These compounds have two identical binding modules that are connected by a linker of various length and rigidity, with each module binding very weakly; however, when both modules bind the binding affinity is greatly enhanced. The interactions of these compounds with cruciforms are currently being studied.

Page generated in 0.5341 seconds