• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 25
  • 21
  • 8
  • 4
  • 3
  • 1
  • Tagged with
  • 112
  • 112
  • 49
  • 43
  • 38
  • 31
  • 27
  • 25
  • 19
  • 18
  • 18
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advances in hollow core fibres and application to mid-infrared fibre gas lasers

Xu, Mengrong January 2018 (has links)
Anti-resonant hollow core fibre is a new kind of optical fibre waveguide in which light is trapped in a hollow core surrounded by the capillary formed microstructured cladding. This fibre exhibits high damage threshold, low dispersion and ultra-low nonlinearity with relatively low loss of a few tens of dB/km. Its intrinsic feature of multimode delivery limits the applications with high requirements of single mode transmission. In my thesis, I demonstrate how the design of hollow core fibre can be improved with single mode guidance. S2 imaging measurement was used to analyse the mode content of the solid core fibres. In my research, I established S2 measurement to measure the mode contents in hollow core fibres for the first time. Two hollow core fibres with 8 capillaries and 7 capillaries in their claddings were fabricated in same fashion and showed differences in low attenuations. By comparing the mode contents in both of the fibres via S2 imaging measurement, 7-capillary HCF was demonstrated to give better performance on single mode guidance. Among the applications of the HCF, the property of delivering high power in HCF makes the gas filled HCF laser possible. In my research, a continuous-wave mid-infrared acetylene filled hollow core laser was built with a slope efficiency of 33% and an output power of over 1 watt at the wavelength region of 3.1~3.2 μm. The pump source is an Erbium-doped fibre amplified tunable laser diode which works at C-band wavelength. The fibre without the gain medium has two transmission bands with low attenuation of 0.037 dB/m and 0.063 dB/m at pumping and lasing wavelengths respectively. This laser system works in either cavity-based configuration or single pass ASE configuration. The latter configuration shows a better performance in high output power and high slope efficiency. The optimized laser system was studied experimentally with the proper fibre length and gas pressure. This laser system could be extended to be filled with other molecules to longer wavelengths and has potential for high power output.
2

Composite action using hollow core slabs

Nethercot, D.A., Lam, Dennis, Elliott, K.S. January 1999 (has links)
No
3

Shear capacity of dry-cast extruded precast/prestressed hollow-core slabs

Truderung, Karl 02 September 2011 (has links)
Based on previous testing and analysis, it is believed that North American concrete design codes yield conservative shear designs for precast/prestressed hollow-core slabs in the 203 to 305 mm depth range. The objective of this research program is to calibrate the Canadian code shear equations to precast/prestressed hollow-core slabs, through testing a series of full-scale slabs to failure in shear. A total of twelve hollow-core slabs from one slab producer, using two types of extruders were tested in shear. Test variables include the bearing length and the prestressing level. Results are presented in terms of experimental to predicted capacity using the Canadian and American concrete design codes, the failure mode, crack profiles, and the critical section location for shear. It was concluded that the Canadian code shear equations are inappropriate for use with hollow-core slabs with low prestressing levels in the 203 to 305 mm depth range.
4

Shear capacity of dry-cast extruded precast/prestressed hollow-core slabs

Truderung, Karl 02 September 2011 (has links)
Based on previous testing and analysis, it is believed that North American concrete design codes yield conservative shear designs for precast/prestressed hollow-core slabs in the 203 to 305 mm depth range. The objective of this research program is to calibrate the Canadian code shear equations to precast/prestressed hollow-core slabs, through testing a series of full-scale slabs to failure in shear. A total of twelve hollow-core slabs from one slab producer, using two types of extruders were tested in shear. Test variables include the bearing length and the prestressing level. Results are presented in terms of experimental to predicted capacity using the Canadian and American concrete design codes, the failure mode, crack profiles, and the critical section location for shear. It was concluded that the Canadian code shear equations are inappropriate for use with hollow-core slabs with low prestressing levels in the 203 to 305 mm depth range.
5

Review of Hollow Core Floor Slab in New Zealand – History of Practice, Past Research, and Failure Modes Seen in Research and Recent Earthquakes

Khanal, Abhisek 05 September 2019 (has links)
No description available.
6

Recent Research and Development in Semi-Rigid Composite Joints with Precast Hollowcore Slabs

Lam, Dennis January 2008 (has links)
No / Composite structure incorporating steel beams and precast hollowcore slabs is a recently developed composite floor system for building structures. This form of composite construction is so far limited to simple beam-column connections. Although the concept of semi-rigid composite joints has been widely research in the past, most of the researches have been carried out on composite joints with metal deck flooring and solid concrete slabs. Research on composite joints with precast hollowcore slabs is rather limited. As the construction industry demands for rapid construction with reduction in cost and environmental impacts, this form of composite floor system, which does not require major onsite concreting, has become very popular among the designers and engineers in the UK. In this paper, full-scale tests of beam-to-column semi-rigid composite joints with steel beam and precast hollowcore slabs are reported. Based on the tests data; the structural behaviour of these semi-rigid composite joints is discussed together with numerical and finite element modelling. Through parametric studies, an analytical model for the semirigid composite joints is proposed and is verified by both the experimental data and finite element model; and good agreement is obtained.
7

Photonic solutions towards optical waveform synthesis

Couny, Francois January 2008 (has links)
This thesis presents the development of photonic tools towards the realisation of an optical intensity waveform synthesiser and of an attosecond pulse synthesiser based on the generation and Fourier synthesis of a continuous-wave coherent spectral comb spanning more than 3 octaves (UV to mid-IR) by use of a gas-filled hollow core photonic crystal fibre (HC-PCF).
8

The Effect of External Stress on the Dispersion Characteristics of Photonic Crystal Fiber

chung, hao-sheng 27 July 2010 (has links)
This paper discussed a way of applied stress to control the photonic crystal fiber dispersion curve, so that it can act on the anomalous dispersion or normal dispersion region area. By this way, we can design the pulse compressor and pulse stretcher for higher peak power laser system. Recently, high-power shortpulse laser has become an indispensable tool in many field, using short-pulse laser oscillator, combined with chirped-frequency amplification technology to produce high-power short-pulse laser system can be used for industrial or medical applications. The all-fiber laser system not only provide better pulse quality and also increased pulse laser system on the stability of the environment.
9

Modelling Lateral Stability of Prefabricated Concrete Structures

Lindwall, Caroline, Wester, Jonas January 2016 (has links)
Stability calculations of prefabricated concrete structures with help of FEM-tools demand knowledge about how the elements are related to each other. This thesis concerns how joints between building elements affect the results when modelling prefabricated concrete structures, with demarcation to joints between hollow core (HC) slabs and between solid wall elements. The thesis also covers how the properties of the floor can be adjusted to account for the effects of the joints without modelling every single element. The work started by measuring the deflection of 10 HC-slabs jointed together and loaded in-plane acting as a deep beam, in a FE-model made with Robot™, from Autodesk®. The joints between the HC-elements were modelled either rigid or elastic, and the cross-section and the length of the HC-elements were varied. The linear elastic stiffness between the HC-elements was obtained from the literature as 0.05 (GN/m)/m. The results showed that a changed cross-section geometry gave greater differences in deformation than a changed length. The in-plane shear modulus was then adjusted for the HC-elements in the rigid cases until the same deflection was achieved as for the elastic cases. The result showed that the shear modulus in average for the different cross-section geometries and lengths had to be reduced with a factor of 0.1 to account for the joints. Based on the geometry of a castellated joint between prefabricated solid concrete walls, a calculation model was developed for its linear elastic stiffness. The result was a stiffness of 1.86 (GN/m)/m. To verify the calculated stiffness, a FE-model was developed consisting of a 30m high wall, loaded horizontally in-plane and with one or two vertical joints where the stiffness was applied. The deflection and the reaction forces were noted and the result from the calculated stiffness was compared to other stiffnesses and assessed reasonable. The reaction forces were shown to depend on the stiffness of the joint. The reduced in-plane shear modulus of the HC-elements and the calculated stiffness of the wall joints were then used in a FE-model of a 10-storey building stabilised by two units. The vertical reaction forces were analysed and the results showed 0.02 % difference in the reaction forces in the stabilising units when consideration of the joints between the HC-elements were taken into account and 0.09 % when the vertical joints in the shear wall were taken into account. The results for the wall joint differed from the results when only the wall was modelled. This was thought to be a result of that the floors counteract the shear deformations in the wall joints. The influence of the floor joints was not significant for the building considered in this thesis, but for buildings with non-continuous configuration of the stiffness in the shear walls the outcome may be another, in these cases the reduction factor may be useful. / Vid stabilitetsberäkningar av prefabricerade betongstommar med hjälp av FEM-verktyg ställs krav på kunskap om hur elementen förhåller sig till varandra. Detta arbete berör hur fogar mellan byggnadselement påverkar modellering av prefabricerade betongstommar med avgränsning till fogar mellan håldäckselement och mellan solida väggelement. Arbetet berör även en studie i hur ett bjälklags egenskaper kan justeras så att fogarnas effekt kan tillvaratas utan att modellera varje enskilt håldäckselement. Arbetet inleddes med att utböjningen analyserades hos 10 st ihopskarvade håldäckselement, lastade i dess plan likt en hög balk, i en FE-modell skapad i programmet Robot™, från Autodesk®. Fogarna mellan håldäcken modellerades som antingen rigida eller elastiska och håldäckens tvärsnittsgeometri och längd varierades under testet. Den linjära styvheten mellan håldäcken togs från litteraturen som 0.05 (GN/m)/m. Resultatet visade att ändrad tvärsnittsgeometri gav större skillnader för deformationen än varierad längd på håldäcken. Håldäckens skjuvmodul justerades sedan i dess plan för de rigida testen tills dess att de uppnådde samma utböjning som de elastiska. Resultatet visade att skjuvmodulen behövdes reduceras med en faktor 0.1, i medeltal för de olika tvärsnittsgeometrierna och håldäckslängderna. Utefter geometrin på en fog med förtagningar mellan prefabricerade väggar togs en beräkningsmodell fram för den linjärelastiska styvheten i väggfogarna. Resultatet blev en styvhet på 1.86 (GN/m)/m. För att verifiera den beräknade styvheten togs en FE-modell fram bestående av en 30m hög vägg lastad horisontellt i dess plan med en eller två vertikala fogar där en linjär styvhet applicerades. Utböjningen samt reaktionskrafterna noterades, resultatet för den uträknade linjära styvheten jämfördes med andra styvheter och bedömdes utifrån detta vara rimlig. Reaktionskrafterna visade sig vara beroende av styvheten på fogen. Den sänkta skjuvmodulen för håldäcken och den beräknade linjära elasticiteten för väggarna användes sedan i en FE-modell av en 10-våningsbyggnad med två stabiliserande enheter där de vertikala reaktionskrafterna analyserades. Resultatet visade att endast 0.02 procentenheter skiljer reaktionskrafterna i de stabiliserande enheterna då hänsyn tas till fogarna mellan håldäcken och 0.09 procentenheter då hänsyn tas till fogarna mellan väggarna. Resultatet skiljer sig från när endast väggen modellerades, vilket tros bero på att bjälklaget hjälper till att motverka deformationer i väggfogarna. Fogen mellan bjälklagselementen tros kunna ha större inverkan på en byggnad med stabiliserande enheter som drastiskt ändrar styvhet från ett plan till ett annat, i dessa fall kan den framtagna reduktionsfaktorn vara av nytta.
10

Thermal Mass, Night Cooling and Hollow Core Ventilation System as Energy Saving Strategies in Buildings

Rinaldi, Nicola January 2009 (has links)
No description available.

Page generated in 0.0406 seconds