Spelling suggestions: "subject:"monoclinic intersection"" "subject:"baroclinic intersection""
1 |
Intersecções homoclínicas /Bronzi, Marcus Augusto. January 2006 (has links)
Orientador: Vanderlei Minori Horita / Banca: Ali Tahzibi / Banca: Paulo Ricardo Silva / Resumo: Estudamos intersecções homoclínicas de variedades estável e instável de pontos peródicos. Toda intersecção homoclínica produz um comportamento curioso na dinâmiôa. Nosso modelo de tal fenômeno é a famosa ferradura de Smale, a qual é um conjunto hiperbólico para um difeomorfismo. Além disso, estudamos dinâmica não hiperbólica cuja perda de hiperbolicidade é divido à tangências homoclínicas. Elas tem um papel central na teoria de sistemas dinâmicos. O desdobramento de uma tangência homoclínica produz dinâmicas muito interessantes. Neste trabalho estudamos a criação de cascatas de bifurcações de duplicação de período e um esquema de renormalização para uma tangência homoclínica. / Abstract: We study homoclinic intersection of stable and unstable manifolds of periodic points. Every homoclinic intersection produce a intricate behavior of the dynamics. Our model of such phenomena is the so called Smalesþs horseshoe, which is a hyperbolic set for a di eomorphism. We also study non hyperbolic dynamics whose lack of hyperbolicity is due to homoclinic tangencies. They play a central role in the theory of dynamical systems. The unfolding of a homoclinic tangency produce many interesting dynamics. In this work we study creation of cascade of period doubling bifurcations and a renormalization scheme for a homoclinic tangency. / Mestre
|
2 |
Intersecções homoclínicasBronzi, Marcus Augusto [UNESP] 03 March 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-03-03Bitstream added on 2014-06-13T20:27:28Z : No. of bitstreams: 1
bronzi_ma_me_sjrp.pdf: 904425 bytes, checksum: 2344eb35a112034c2f1741b2e229f1ec (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Estudamos intersecções homoclínicas de variedades estável e instável de pontos peródicos. Toda intersecção homoclínica produz um comportamento curioso na dinâmiôa. Nosso modelo de tal fenômeno é a famosa ferradura de Smale, a qual é um conjunto hiperbólico para um difeomorfismo. Além disso, estudamos dinâmica não hiperbólica cuja perda de hiperbolicidade é divido à tangências homoclínicas. Elas tem um papel central na teoria de sistemas dinâmicos. O desdobramento de uma tangência homoclínica produz dinâmicas muito interessantes. Neste trabalho estudamos a criação de cascatas de bifurcações de duplicação de período e um esquema de renormalização para uma tangência homoclínica. / We study homoclinic intersection of stable and unstable manifolds of periodic points. Every homoclinic intersection produce a intricate behavior of the dynamics. Our model of such phenomena is the so called Smalesþs horseshoe, which is a hyperbolic set for a di eomorphism. We also study non hyperbolic dynamics whose lack of hyperbolicity is due to homoclinic tangencies. They play a central role in the theory of dynamical systems. The unfolding of a homoclinic tangency produce many interesting dynamics. In this work we study creation of cascade of period doubling bifurcations and a renormalization scheme for a homoclinic tangency.
|
3 |
[pt] CICLOS HETERODIMENSIONAIS DE CO- ÍNDICE DOIS E BLENDERS SIMBÓLICOS / [en] HETERODIMENSIONAL CYCLES OF CO-INDEX TWO AND SYMBOLIC BLENDERS23 December 2021 (has links)
[pt] Na primeira parte da tese, consideramos difeomorfismos com ciclos
heterodimensionais associados a um par de selas P e Q de co-índice dois.
Provamos que difeomorfismos com ciclos que possuem no mínimo um par
de autovalores centrais do ciclo não real geram ciclos heterodimensionais
robustos. Além disso, quando os autovalores centrais são não-reais, os ciclos
robustos estão associados as continuações das selas iniciais (ou seja, os
ciclos podem ser estabilizados). Na segunda parte deste trabalho estudamos
mapas produto cruzado sobre aplicações deslocamento (do tipo Bernoulli)
com fibras contrativas e dependência Holder nos pontos da base. Provamos
que sistemas que satisfazem a propriedade de cobertura exibem blender
simbólicos. Estes blenders são generalizações do blender usual cuja principal
característica é que suas direções centrais podem ter qualquer dimensão
d maior ou igual que 1. / [en] In the first part of the thesis, we consider diffeomorphisms having heterodimensional
cycles associated with a pair of saddles P and Q of co-index
two. We prove that diffeomorphisms with cycles, which have at least one
pair of non-real central eigenvalues, generate robust heterodimensional cycles.
Moreover, when both central eigenvalues are non-real, the robust cycles
are associated with the continuation of the initial saddles (i.e. the cycle can
be stabilized). In the second part of this work we study skew product maps
over Bernoulli shifts with contracting fibers and Holder dependence on the
base points. We prove that systems satisfying the covering property exhibit
symbolic blenders. These blenders are generalizations of the usual blenders
whose main property is that their central direction may have any dimension
d greater than or equal to 1.
|
Page generated in 0.3434 seconds