• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des chocs d'origine pyrotechnique dans les structures d'Ariane5 : développement de modèles de propagation et d'outils de modélisation

Grede, Audrey 28 January 2009 (has links) (PDF)
La compréhension et l'amélioration de l'environnement vibratoire des charges utiles demande la mise au point de démarches prédictives maîtrisées qui permettent de comprendre les phénomènes de transmission des ondes de chocs d'origine pyrotechnique dans le lanceur Ariane5. Plus particulièrement, la maîtrise du comportement transitoire des coques sandwichs en nid d'abeilles, principaux constituants de l'Adaptateur de Charges Utiles – structure porteuse des satellites, est nécessaire pour prédire les vibrations au pied des équipements électroniques des satellites et des lanceurs. Cette problématique présente un caractère multi-échelle tant d'un point de vue temporel (charge mobile supersonique, temps d'analyse) que spatial (dimensions des structures du lanceur, taille des cellules en nid d'abeilles, longueurs d'ondes liées aux hautes fréquences). Celui-ci a été traité dans cette thèse en s'appuyant d'une part, sur une qualification à la fois analytique et numérique des modèles classiques homogénéisés des plaques sandwichs en nid d'abeilles pour la gamme de fréquence mise en jeu et d'autre part, sur une application des stratégies de remaillage adaptatif pour la propagation des ondes développées dans le cadre de la méthode de Galerkin espace-temps discontinue en temps. Deux catégories de modèles de plaques épaisses ont été ainsi construites dans le but d'enrichir la cinématique classique de plaques épaisses de Mindlin-Reissner qui s'est avérée être insuffisante pour correctement représenter le comportement dynamique hors-plan des plaques sandwich en nid d'abeilles. Ainsi ont été analysés les modèles dits monocouches basés sur un enrichissement de la cinématique par ajout de degrés de liberté dans l'épaisseur, et les modèles multicouches composés d'une superposition de trois plaques avec une homogénéisation séparée des matériaux. Il a été montré que ces deux sortes de modèles améliorent la description des phénomènes de hautes fréquences, notamment ceux de flexion et de cisaillement transverse qui sont plus délicats à retranscrire. Toutes les études numériques ont été effectuées avec un code éléments finis qui emploie des solveurs adaptatifs dynamiques basés sur la méthode de Galerkin espace-temps discontinue en temps. Cette méthode d'intégration en temps introduit un amortissement numérique dépendant du pas de temps et qui peut interférer avec un amortissement physique susceptible d'être introduit dans un modèle numérique et conduire au final à un amortissement total différent de celui qui est attendu. Cette interaction a été analysée et mise en évidence dans ce travail à travers l'introduction de l'amortissement de Rayleigh dans les modèles de propagation de chocs. Les outils et les modèles de propagation ainsi développés ont été validés sur plusieurs structures académiques et industrielles. Des comparaisons avec des données expérimentales sur des structures industrielles de grande taille, plus particulièrement sur un Adaptateur de Charges Utiles d'Ariane5, sont effectuées et soulignent la cohérence de notre approche ainsi que la fiabilité et l'efficacité des modèles de propagation proposés.
2

Homogenized and analytical models for the diffusion MRI signal / Modélisation du signal de l’IRM de diffusion par des techniques analytiques et d’homogénéisation

Schiavi, Simona 01 December 2016 (has links)
L'imagerie par résonance magnétique de diffusion (IRMD) est une technique d'imagerie qui teste les propriétés diffusives d'un échantillon en le soumettant aux impulsions d'un gradient de champ magnétique. Plus précisément, elle détecte le mouvement de l'eau dû à la diffusion et s'avère donc être un outil puissant pour obtenir des informations sur la microstructure des tissus. Le signal acquis par le scanner IRM est une mesure moyennée sur un volume physique appelé voxel, dont la taille, pour des raisons techniques, est bien plus grande que l'échelle de variations microscopiques de la structure cellulaire. Ceci implique que les composants microscopiques des tissus ne sont pas visibles à la résolution spatiale de l'IRM et que les caractéristiques géométriques se trouvent agréger dans le signal macroscopique provenant du voxel. Une importante quantité mesurée par l'IRMD dans chaque voxel est le Coefficient de Diffusion Apparent (CDA) dont la dépendance au temps de diffusion est actée par de nombreuses expériences d'imagerie effectuées in vivo. Il existe dans la littérature un nombre important de modèles macroscopiques décrivant le CDA allant du plus simple au plus complexe (modèles phénoménologiques, stochastiques, géométriques, fondés sur des EDP, etc.), chacun étant valide sous certaines hypothèses techniques bien précises. Le but de cette thèse est de construire des modèles simples, disposant d'une bonne validité applicative, en se fondant sur une modélisation de la diffusion à l'échelle microscopique à l'aide d'EDP et de techniques d'homogénéisation.Dans un article antérieur, le modèle homogénéisé FPK a été déduit de l’EDP de Bloch-Torrey sous l'hypothèse que la perméabilité de la membrane soit petite et le temps de diffusion long. Nous effectuons tout d'abord une analyse de ce modèle et établissons sa convergence vers le modèle classique de Kärger lorsque la durée des impulsions magnétiques tend vers 0. Notre analyse montre que le modèle FPK peut être vu comme une généralisation de celui de Kärger, permettant la prise en compte de durées d'impulsions magnétiques arbitraires. Nous donnons aussi une nouvelle définition, motivée par des raisons mathématiques, du temps de diffusion pour le modèle de Kärger (celle impliquant la plus grande vitesse de convergence).Le CDA du modèle FPK est indépendant du temps ce qui entre en contradiction avec nombreuses observations expérimentales. Par conséquent, notre objectif suivant est de corriger ce modèle pour de petites valeurs de ce que l'on appelle des b-valeurs afin que le CDA homogénéisé qui en résulte soit sensible à la fois à la durée des impulsions et à la fois au temps de diffusion. Pour atteindre cet objectif, nous utilisons une technique d'homogénéisation similaire à celle utilisée pour le FPK, tout en proposant un redimensionnement adapté de l'échelle de temps et de l'intensité du gradient pour la gamme de b-valeurs considérées. Nous montrons, à l'aide de simulations numériques, l'excellente qualité de l'approximation du signal IRMD par ce nouveau modèle asymptotique pour de faibles b-valeurs. Nous établissons aussi (grâce à des développements en temps court des potentiels de surface associés à l'équation de la chaleur ou grâce à une décomposition de sa solution selon les fonctions propres) des résultats analytiques d'approximation du modèle asymptotique qui fournissent des formules explicites de la dépendance temporelle du CDA. Nos résultats sont en accord avec les résultats classiques présents dans la littérature et nous améliorons certains d'entre eux grâce à la prise en compte de la durée des impulsions. Enfin nous étudions le problème inverse consistant en la détermination d'information qualitative se rapportant à la fraction volumique des cellules à partir de signaux IRMD mesurés. Si trouver la distribution de sphères semble possible à partir de la mesure du signal IRMD complet, il nous est apparu que la mesure du seul CDA ne serait pas suffisante. / Diffusion magnetic resonance imaging (dMRI) is an imaging modality that probes the diffusion characteristics of a sample via the application of magnetic field gradient pulses. More specifically, it encodes water displacement due to diffusion and is then a powerful tool to obtain information on the tissue microstructure. The signal measured by the MRI scanner is a mean-value measurement in a physical volume, called a voxel, whose size, due to technical reasons, is much larger than the scale of the microscopic variations of the cellular structure. It follows that the microscopic components of the tissues are not visible at the spatial resolution of dMRI. Rather, their geometric features are aggregated into the macroscopic signal coming from the voxels. An important quantity measured in dMRI in each voxel is the Apparent Diffusion Coefficient (ADC) and it is well-established from imaging experiments that, in the brain, in-vivo, the ADC is dependent on the diffusion time. There is a large variety (phenomenological, probabilistic, geometrical, PDE based model, etc.) of macroscopic models for ADC in the literature, ranging from simple to complicated. Indeed, each of these models is valid under a certain set of assumptions. The goal of this thesis is to derive simple (but sufficiently sound for applications) models starting from fine PDE modelling of diffusion at microscopic scale using homogenization techniques.In a previous work, the homogenized FPK model was derived starting from the Bloch-Torrey PDE equation under the assumption that membrane's permeability is small and diffusion time is large. We first analyse this model and establish a convergence result to the well known K{"a}rger model as the magnetic pulse duration goes to 0. In that sense, our analysis shows that the FPK model is a generalisation of the K{"a}rger one for the case of arbitrary duration of the magnetic pulses. We also give a mathematically justified new definition of the diffusion time for the K{"a}rger model (the one that provides the highest rate of convergence).The ADC for the FPK model is time-independent which is not compatible with some experimental observations. Our goal next is to correct this model for small so called $b$-values so that the resulting homogenised ADC is sensitive to both the pulses duration and the diffusion time. To achieve this goal, we employed a similar homogenization technique as for FPK, but we include a suitable time and gradient intensity scalings for the range of considered $b$-values. Numerical simulations show that the derived asymptotic new model provides a very accurate approximation of the dMRI signal at low $b$-values. We also obtain some analytical approximations (using short time expansion of surface potentials for the heat equation and eigenvalue decompositions) of the asymptotic model that yield explicit formulas of the time dependency of ADC. Our results are in concordance with classical ones in the literature and we improved some of them by accounting for the pulses duration.Finally we explored the inverse problem of determining qualitative information on the cells volume fractions from measured dMRI signals. While finding sphere distributions seems feasible from measurement of the whole dMRI signal, we show that ADC alone would not be sufficient to obtain this information.
3

Etude mathématique et numérique de modèles homogénéisés de métamatériaux

Cocquet, Pierre-Henri 07 December 2012 (has links) (PDF)
Cette thèse concerne la modélisation mathématique et l'approximation numérique de modèles homogénéisés de métamatériaux. Dans la première partie on étudie des problèmes de propagation d'ondes en présence de métamatériaux homogénéisés tels que les équations de Maxwell, le système de l'acoustique ou de l'élasticité linéaire. Nous établissons des résultats d'existence et d'unicité pour ces systèmes sous des hypothèses phénoménologiques sur le métamatériau en accord avec certains modèles de la littérature. Nous abordons ensuite leurs approximations numériques. Nous présentons des résultats concernant les éléments finis pour l'approximation de l'équation de Helmholtz qui montrent que ce schéma peut ne pas converger en présence de métamatériaux. On propose alors un schéma adapté aux métamatériaux, le schéma EF-AL, qui converge dès que le problème est bien-posé. On termine par l'étude du schéma Galerkin Discontinu dont on montre numériquement sa convergence sur des exemples de métamatériaux. La seconde partie présente l'homogénéisation non-périodique formelle de métamatériaux acoustiques. Les travaux d'A.G. Ramm sur la création de milieux à partir d'assemblages d'obstacles sont repris afin de préciser l'asymptotique fine du comportement du champ diffracté par un nombre fini de petites boules de rayon \delta. On utilise pour cela la méthode des développements asymptotiques raccordés. On établit l'existence et l'unicité de ce dernier et des estimations d'erreurs qui valident l'approche formelle. On suppose ensuite que le nombre de petits objets tend vers l'infini lorsque \delta tend vers 0 et passons à la limite dans le développement. Une approximation de Born permet d'obtenir l'indice du milieu contenant tous les objets qui, dans certains cas, est celui d'un métamatériau.
4

Modélisation des chocs d’origine pyrotechnique dans les structures d’Ariane5 : développement de modèles de propagation et d'outils de modélisation / Numerical modeling of pyrotechnic shock wave propagation in the Ariane5's structures : development of propagation models and numerical tools

Grédé, Audrey 28 January 2009 (has links)
La compréhension et l’amélioration de l’environnement vibratoire des charges utiles demande la mise au point de démarches prédictives maîtrisées qui permettent de comprendre les phénomènes de transmission des ondes de chocs d’origine pyrotechnique dans le lanceur Ariane5. Plus particulièrement, la maîtrise du comportement transitoire des coques sandwichs en nid d’abeilles, principaux constituants de l’Adaptateur de Charges Utiles – structure porteuse des satellites, est nécessaire pour prédire les vibrations au pied des équipements électroniques des satellites et des lanceurs. Cette problématique présente un caractère multi-échelle tant d’un point de vue temporel (charge mobile supersonique, temps d’analyse) que spatial (dimensions des structures du lanceur, taille des cellules en nid d’abeilles, longueurs d’ondes liées aux hautes fréquences). Celui-ci a été traité dans cette thèse en s’appuyant d’une part, sur une qualification à la fois analytique et numérique des modèles classiques homogénéisés des plaques sandwichs en nid d’abeilles pour la gamme de fréquence mise en jeu et d’autre part, sur une application des stratégies de remaillage adaptatif pour la propagation des ondes développées dans le cadre de la méthode de Galerkin espace-temps discontinue en temps. Deux catégories de modèles de plaques épaisses ont été ainsi construites dans le but d’enrichir la cinématique classique de plaques épaisses de Mindlin-Reissner qui s’est avérée être insuffisante pour correctement représenter le comportement dynamique hors-plan des plaques sandwich en nid d’abeilles. Ainsi ont été analysés les modèles dits monocouches basés sur un enrichissement de la cinématique par ajout de degrés de liberté dans l’épaisseur, et les modèles multicouches composés d’une superposition de trois plaques avec une homogénéisation séparée des matériaux. Il a été montré que ces deux sortes de modèles améliorent la description des phénomènes de hautes fréquences, notamment ceux de flexion et de cisaillement transverse qui sont plus délicats à retranscrire. Toutes les études numériques ont été effectuées avec un code éléments finis qui emploie des solveurs adaptatifs dynamiques basés sur la méthode de Galerkin espace-temps discontinue en temps. Cette méthode d’intégration en temps introduit un amortissement numérique dépendant du pas de temps et qui peut interférer avec un amortissement physique susceptible d’être introduit dans un modèle numérique et conduire au final à un amortissement total différent de celui qui est attendu. Cette interaction a été analysée et mise en évidence dans ce travail à travers l’introduction de l’amortissement de Rayleigh dans les modèles de propagation de chocs. Les outils et les modèles de propagation ainsi développés ont été validés sur plusieurs structures académiques et industrielles. Des comparaisons avec des données expérimentales sur des structures industrielles de grande taille, plus particulièrement sur un Adaptateur de Charges Utiles d’Ariane5, sont effectuées et soulignent la cohérence de notre approche ainsi que la fiabilité et l’efficacité des modèles de propagation proposés. / Reliable and efficient numerical models for the pyrotechnic shock wave propagation in structures of the Ariane5 launcher are necessary for a good understanding and a predictive analysis of the payload vibration environment. More precisely, the correct modeling of the dynamic behaviour of the honeycomb sandwich shells, the main material composing the payload adaptor, is essential to control the vibration environment of the payload and the embarked electronic equipments and so to prevent them from damages caused by the shock wave propagation. The topic is obviously a multi-scale problem from both temporal and spatial points of view : short time intervals imposed by supersonic moving loads vs. large total time interval that the slowest waves need to travel throughout the adaptor ; very short wavelengths of high frequency waves, and very small size of the honeycomb cells vs. large structure dimensions. To take into account all involved space-time scales in a reliable and efficient way, the herein study is based both on the analytical and numerical qualification of the classical homogenized models of honeycomb sandwich shells for the frequency range introduced by the pyrotechnic shock wave, and on a dynamic solver based on the well-known space-time discontinuous Galerkin method, allowing the use of adaptive remeshes for the wave propagation. The classical Mindlin-Reissner’s kinematics of thick plates being inefficient to correctly represent the dynamic out-of-plane behaviour of the honeycomb sandwich plates, two kinds of its enrichment are considered : One-layered models based on an enrichment of the kinematics by adding degrees of freedom in the thickness, and multi-layered models composed of a superposition of three plates with separated material homogenisations. It has been shown theoretically and numerically that, both types of enrichment allow more precise descriptions of flexure and transverse shear modes in the high frequency range. However, the multi-layered models give much more promising results, as the important role played by the honeycomb core for the transverse shear behaviour of the whole sandwich is not “smeared” in a one-layered homogenized model. All the numerical studies were conducted with a finite element code which uses a dynamic solverbased on the time discontinuous space-time Galerkin method. The built-in numerical damping of this solver can interfere with a physical damping potentially introduced by the numerical model and results in a global damping totally unexpected. This interaction has been analysed and underlined in this work thanks to the introduction of the Rayleigh damping in the shock wave propagation models. Theoretical and numerical tools and propagating models thus developed have been validated on several academic and industrial structures. Comparison with experimental data on large size industrial structures, especially a real size payload adaptor, is performed and emphasizes the coherence of our approach and the reliability and the efficiency of the proposed propagating models.
5

Shape and topology optimization of multiphysics systems / Optimisation topologique de systèmes multiphysiques

Feppon, Florian 16 December 2019 (has links)
Cette thèse est consacrée à l'optimisation de la topologie et de la forme de systèmesmultiphysiques motivés par des applications de l'industrie aéronautique. Nouscalculons les dérivées de forme de fonctions de coût arbitraires pour un modèlefluide, thermique et mécanique faiblement couplé. Nous développons ensuite unalgorithme de type gradient adapté à la résolution de problèmes d'optimisation deformes sous contraintes qui ne requiert par de réglage de paramètres nonphysiques. Nous introduisons ensuite une méthode variationnelle qui permet decalculer des intégrales le long de rayons sur un maillage par la résolution d'unproblème variationnel qui ne requiert pas la détermination explicite de ces lignessur la discrétisation spatiale. Cette méthode nous a ainsi permis d'imposer unecontrainte de non-mélange de phases pour une application à l'optimisationd'échangeurs de chaleur bi-tubes. Tous ces ingrédients ont été employés pour traiterune variété de cas tests d'optimisation de formes pour des systèmes multi-physiques2-d ou 3-d. Nous avons considéré des problèmes à une seule, deux ou bien troisphysiques couplées en 2-d, et des problèmes de tailles relativement élevées en 3-dpour la mécanique, la conduction thermique, l'optimisation de profils aérodynamiques,et de la forme de systèmes en interaction fluide-structure. Un dernier chapitred'ouverture est consacré à l'étude de modèles homogénéisées d'ordres élevés pour lessystèmes elliptiques perforés. Ces équations d'ordres élevés englobent les troisrégimes homogénéisés classiques associés à divers rapports d'échelles pour la tailledes obstacles. Elles pourraient permettre, dans de futurs travaux, de développer denouvelles méthodes d'optimisation pour les systèmes fluides caractérisés par desmotifs multi-échelles, ainsi que couramment rencontré dans la conception deséchangeurs thermiques industriels. / This work is devoted to shape and topology optimization of multiphysics systemsmotivated by aeronautic industrial applications. Shape derivatives of arbitraryobjective functionals are computed for a weakly coupled thermal fluid-structuremodel. A novel gradient flow type algorithm is then developed for solving genericconstrained shape optimization problems without the need for tuning non-physicalmetaparameters. Motivated by the need for enforcing non-mixing constraints in thedesign of liquid-liquid heat exchangers, a variational method is developed in orderto simplify the numerical evaluation of geometric constraints: it allows to computeline integrals on a mesh by solving a variational problem without requiring theexplicit knowledge of these lines on the spatial discretization. All theseingredients allowed us to implement a variety of 2-d and 3-d multiphysics shapeoptimization test cases: from single, double or three physics problems in 2-d, tomoderately large-scale 3-d test cases for structural design, thermal conduction,aerodynamic design and a fluid-structure interacting system. A final opening chapterderives high order homogenized equations for perforated elliptic systems. These highorder equations encompass the three classical regimes of homogenized modelsassociated with different obstacle's size scalings. They could allow, in futureworks, to develop new topology optimization methods for fluid systems characterizedby multi-scale patterns as commonly encountered in industrial heat exchanger designs.
6

Modélisation des chocs d'origine pyrotechnique dans les structures d'Ariane5 : développement de modèles de propagation et d'outils de modélisation

Grede, Audrey 28 January 2009 (has links) (PDF)
La compréhension et l'amélioration de l'environnement vibratoire des charges utiles demande la mise au point de démarches prédictives maîtrisées qui permettent de comprendre les phénomènes de transmission des ondes de chocs d'origine pyrotechnique dans le lanceur Ariane5. Plus particulièrement, la maîtrise du comportement transitoire des coques sandwichs en nid d'abeilles, principaux constituants de l'Adaptateur de Charges Utiles - structure porteuse des satellites, est nécessaire pour prédire les vibrations au pied des équipements électroniques des satellites et des lanceurs. Cette problématique présente un caractère multi-échelle tant d'un point de vue temporel (charge mobile supersonique, temps d'analyse) que spatial (dimensions des structures du lanceur, taille des cellules en nid d'abeilles, longueurs d'ondes liées aux hautes fréquences). Celui-ci a été traité dans cette thèse en s'appuyant d'une part, sur une qualification à la fois analytique et numérique des modèles classiques homogénéisés des plaques sandwichs en nid d'abeilles pour la gamme de fréquence mise en jeu et d'autre part, sur une application des stratégies de remaillage adaptatif pour la propagation des ondes développées dans le cadre de la méthode de Galerkin espace-temps discontinue en temps. Deux catégories de modèles de plaques épaisses ont été ainsi construites dans le but d'enrichir la cinématique classique de plaques épaisses de Mindlin-Reissner qui s'est avérée être insuffisante pour correctement représenter le comportement dynamique hors-plan des plaques sandwich en nid d'abeilles. Ainsi ont été analysés les modèles dits monocouches basés sur un enrichissement de la cinématique par ajout de degrés de liberté dans l'épaisseur, et les modèles multicouches composés d'une superposition de trois plaques avec une homogénéisation séparée des matériaux. Il a été montré que ces deux sortes de modèles améliorent la description des phénomènes de hautes fréquences, notamment ceux de flexion et de cisaillement transverse qui sont plus délicats à retranscrire. Toutes les études numériques ont été effectuées avec un code éléments finis qui emploie des solveurs adaptatifs dynamiques basés sur la méthode de Galerkin espace-temps discontinue en temps. Cette méthode d'intégration en temps introduit un amortissement numérique dépendant du pas de temps et qui peut interférer avec un amortissement physique susceptible d'être introduit dans un modèle numérique et conduire au final à un amortissement total différent de celui qui est attendu. Cette interaction a été analysée et mise en évidence dans ce travail à travers l'introduction de l'amortissement de Rayleigh dans les modèles de propagation de chocs. Les outils et les modèles de propagation ainsi développés ont été validés sur plusieurs structures académiques et industrielles. Des comparaisons avec des données expérimentales sur des structures industrielles de grande taille, plus particulièrement sur un Adaptateur de Charges Utiles d'Ariane5, sont effectuées et soulignent la cohérence de notre approche ainsi que la fiabilité et l'efficacité des modèles de propagation proposés.
7

Simulation du remodelage structurel des oreillettes : dissociation endo-épicardique, optimisation multi-paramètre des conductivités et morphologie des potentiels extracellulaires

Irakoze, Éric 12 1900 (has links)
La fibrillation auriculaire (FA) est le type d’arythmie cardiaque le plus fréquent. Cependant, ses mécanismes sont encore mal compris et le développement de stratégies thérapeutiques efficaces reste un défi. Des recherches ont montré que les mécanismes de remodelage structurel, notamment la dissociation électrique endocardique-épicardique, jouent un rôle potentiellement important dans l'initiation, la complexité et le maintien de la FA. En ce sens, les potentiels extracellulaires sont des outils non invasifs largement utilisés dans le diagnostic et la compréhension de cette arythmie ainsi que dans le guidage des interventions par cathéter. L'objectif principal de cette thèse était de développer des modèles informatiques des oreillettes et d’étudier dans ces modèles comment les potentiels extracellulaires et les cartes d'activation à haute résolution peuvent être exploités pour caractériser les mécanismes de dissociation endocardique-épicardique en tant que substrat de la FA. Dans un premier temps, en utilisant un modèle de tissu auriculaire, nous avons montré que la dissociation endo-épicardique (délai endo-épicardique et couplage transmural) affecte l'asymétrie des électrogrammes unipolaires à travers l'orientation des sources de courant dipolaire dans le tissu auriculaire. Ce résultat a été par la suite confirmé par l’analyse morphologique des composantes de l’onde P dans un modèle anatomique des oreillettes. Nous avons en outre montré que l’épaisseur de la paroi auriculaire ainsi que le couplage transmural étaient des déterminants importants de ce délai, et que ce dernier peut induire des altérations significatives de la morphologie l’onde P même lorsque les cartes d’activation sont similaires et que les ondes P ont la même durée. Dans un second temps, nous avons exploré les effets tridimensionnels de la dissociation endo-épicardique et validé une technique de détection de percée d’ondes (breakthroughs) basée sur l’analyse des cartes d'activation à haute résolution et le suivi des ondes, en utilisant un modèle électro-anatomique de découplage endo-épicardique local. Nous avons utilisé cet outil pour la caractérisation de la dissociation endo-épicardique. Un critère de validité en a été dérivé, ce qui faciliterait la comparaison des taux de percée avec les données cliniques et la validation des outils d'analyse des signaux cartographiques lors de la caractérisation de la dissociation endo-épicardique. Enfin, nous avons développé un outil d'optimisation multi-paramètre qui rend possible l’étude des limites des modèles continus homogénéisés dans l'étude des mécanismes de dissociation endo-épicardique et aide dans le choix des modèles (continu homogénéisé ou discret détaillé). L’outil permet d’estimer le profil régulier de conductivité qui reproduit le mieux les propriétés de conduction cardiaque d'un modèle discret donné. Les résultats ont montré l'efficacité de cet outil pour reproduire des cartes d'activation dans le modèle homogénéisé même en présence de fibrose sévère. Ultimement, ce travail pose les bases du développement de nouveaux modèles informatiques pouvant aider à l’interprétation des signaux électriques dans des tissus cardiaques remodelés où la présence de micro-hétérogénéités exhibe les limites des modèles homogénéisés. / Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. However, its mechanisms are still poorly understood and the development of effective therapeutic strategies remains a challenge. Research studies have shown that the mechanisms of structural remodeling, including endocardial-epicardial electrical dissociation, play a potentially important role in the initiation, complexity, and maintenance of AF. In this sense, extracellular potentials are non-invasive tools widely used in the diagnosis and understanding of this arrhythmia as well as in the guidance of catheter interventions. The main objective of this thesis was to develop computer models of the atria and to study in these models how extracellular potentials and high resolution activation maps can be exploited to characterize the mechanisms of endocardial-epicardial dissociation as substrate of AF. First, using an atrial tissue model, we showed that endo-epicardial dissociation (endo-epicardial delay and transmural coupling) alters the asymmetry of unipolar electrograms through the orientation of dipolar current sources in the atrial tissue. This result was later confirmed by morphological analysis of the P-wave components in an anatomical model of the atria. We further showed that atrial wall thickness as well as transmural coupling were important determinants of this delay, and that the latter can induce significant alterations in P-wave morphology even when activation maps are similar and P-waves have the same duration. Secondly, we explored the three-dimensional effects of endo-epicardial dissociation and validated a breakthrough wave detection technique based on the analysis of high-resolution activation maps and wave tracking, using an electro-anatomical model of local endo-epicardial decoupling. We used this tool for the characterization of endo-epicardial dissociation. A validity criterion was derived, which would facilitate the comparison of breakthrough rates with clinical data and the validation of mapping signals analysis tools for characterizing endo-epicardial dissociation. Finally, we developed a multi-parameter optimization tool that makes it possible to study the limits of homogenized continuous models in the study of endo-epicardial dissociation mechanisms and to help in the choice of models (homogenized continuous or detailed discrete). The tool enabled the estimation of the regular conductivity profile that best reproduces the cardiac conduction properties of a given discrete model. The results showed the effectiveness of this tool in reproducing activation maps in the homogenized model even in the presence of severe fibrosis. Ultimately, this work lays the foundations for the development of new computer models that can help in the interpretation of electrical signals in remodeled heart tissues where the presence of micro-heterogeneities exhibits the limits of homogenized models.

Page generated in 0.053 seconds