• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Estrogen-Responsive Epithelial Cell Lines and Their Infectivity by Genital Chlamydia Trachomatis

Guseva, Natalia V., Dessus-Babus, Sophie C., Whittimore, Judy D., Moore, Cheryl G., Wyrick, Priscilla B. 01 December 2005 (has links)
Chlamydial attachment and infectivity in vitro and ascending disease and sequelae in vivo have been reported to be enhanced/modulated by estrogen. Endometrial carcinoma cell lines Ishikawa and HEC-1B and the breast cancer lines MCF-7 and HCC-1806 were examined for Chlamydia trachomatis E infectivity. Estrogen receptor (ER) presence was confirmed by Western blot and qRT-PCR analyses. FACS analysis was used to determine the percent of plasma membrane-localized ERs (mERs), and their activity was tested by estrogen binding and competitive estrogen antagonists assays. Chlamydiae grew in all cell lines with HEC (90%) ≫ MCF-7 (57%) > Ishikawa (51%) ≫ HCC-1806 (20%). The cell line ER isoform composition was re-defined as: ERα + ERβ + for MCF-7, HCC-1806 and Ishikawa; and ERβ only for HEC-1B. HeLa cells were also tested and found to express ERβ, but not ERα. A small percentage of both ERs were surface-exposed and functionally active. The endometrium- predominant ERβ isoform was found in all cell lines, including those most representative of the common sites of C. trachomatis infection. Thus, the role of chlamydial attachment/infectivity will now be analyzed in ERβ + and - isogenic HEC-1B cells.

Page generated in 0.1174 seconds