11 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
12 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
13 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
14 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
15 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
16 |
'Healing architecture': A study of daylight in public hospital designs in MalaysiaSrazali Aripin Unknown Date (has links)
In the hospital building, where patients seek medical treatment and hospital staff provide continuous support, creating a healing environment is an imperative. However, it appears that the ultimate aim to create a healing environment is not given due attention by healthcare designers. Patients’ negative experiences of the existing physical environment of a hospital building describing as depressing, confusing, dull, little natural light, stressful, noisy causing sleep deprivation, anxiety, isolation and physical restraint were noted in many studies of the built environment. Most of these criticisms are also experienced by the patients in the case studies of hospital buildings in Malaysia, particularly on thermal (too warm) and visual (glare) discomfort. Therefore, the term ‘Healing Architecture’ is adopted to invoke a sense of a continuous process; creating an environment physically healthy and psychologically appropriate for patients’ well-being. A majority of the literature on the healing environment has reached a consensus that the physical aspects of built environment could contribute indirectly to the health outcomes of patients and staff in a hospital building. These include shorter length of stay, reduced stress and increased patients’ satisfaction. Among the physical aspects, daylighting is considered one of the most influential factors to achieve visual comfort contributing to a healing environment. The thesis aims to explore daylighting performance of a four-bed ward by means of a parametric study of design variables in order to achieve the visual as well as thermal comfort in creating a healing environment. Conflicting issues of ‘physical to physical’ (e.g. daylight vs. solar heat gain) and ‘physical to psychological’ (e.g. daylight vs. undesirable glare) are analysed. With the theme of daylight and health, previous studies related to the factors of the physical environments in hospital buildings that influence health outcomes are reviewed. The physical factors affecting daylighting to achieve visual comfort are also analysed. Reviews of the project briefs of the completed public hospital buildings in Malaysia are also conducted and seven hospitals are selected as the case studies to investigate daylighting conditions of the existing four-bed ward environment. Triangulation by means of analyses through questionnaire, measurement and computer simulation is the method adopted for the investigation. Available simulation programs are reviewed for suitability and compatibility of the study. The simulation software (validated) used for the study is Integrated Environmental Solutions – Virtual Environment (IES–VE). Based on the qualitative and quantitative analyses, it can be concluded that visual comfort in the existing four-bed ward environments of public hospital buildings in Malaysia is not achieved. Factors contributing to the failure are that the conflicting priorities (i.e. ‘physical vs. physical’ and ‘physical vs. psychological’) were not analysed by healthcare designers when designing a window (size and position), there is clear evidence of glare and daylighting design failed to meet the daylight factor (DF) requirement of 1% at the (innermost) bed-head. The finding is that a healing environment in the four-bed ward is not achieved. The results of the analysis also confirmed that the key physical factors affecting daylighting in the hospital ward are orientation, window design (size and position), external shading device, glass transmittance and indoor surface reflectances. Parametric studies of daylighting design variables on the ‘base case’ unit are formulated in order to find the remedy as well as to arrive at design guidelines. The Subang TRY weather data set is used and examined and found the two worst conditions days of the year: the hottest (day 60) and the cloudy (day 299). Evaluation criteria for measuring thermal as well as visual comfort are established to critically analyse the consequences of the variants in the permutations. A total of 186 simulations are run to appraise the comfort condition of the computer model of the four-bed ward environment. The simulation of daylighting conditions in a four-bed ward environment would take into consideration the magnitude of solar heat gain of one exposed wall (opaque wall and glass window) for the two selected worst days of the year and the ‘best’ orientation (other enclosing elements are taken as adiabatic). The results of the parametric study are analysed by adopting the process of elimination for the selection of variants. The variants of design variables that satisfy the evaluation criteria for comfort criteria set in the study are identified. Design recommendations are made and guidelines on how best to achieve visual comfort through daylighting design strategies in the hospital ward environment in the future are established. The findings arrive at two crucial conclusions in creating a healing environment. Firstly, visual comfort can be achieved through appropriate daylighting design.The second is that in order to achieve visual comfort in the four-bed ward environment there is a need to find a balance between the acceptable magnitude of solar heat gain and satisfying the requirement of daylighting (i.e. the acceptable limit of glare not exceeding a luminance ratio of 10 and 1% DF).
|
17 |
From their perspectives: Children and young people's experience of a paediatric hospital environment and its relationship to their feeling of well-beingBishop, Katherine G January 2008 (has links)
Doctor of Philosophy (PhD) / This study was conducted to increase our understanding of children and young people’s experience of a hospital environment and to identify the salient attributes of the physical environment in their experience. There were three specific aims: to describe children and young people’s experience of a hospital environment and identify what constitutes a supportive paediatric environment; to examine the role of the physical environment in patients’ feeling of well-being; and to highlight the capacity of participatory research with children and young people to inform evidence-based paediatric design. At this stage, there has been very little healthcare design research carried out with populations of children and young people. Well-being research with children and young people in paediatric environments that identifies the potential supportive attributes in this environment is also very limited. Historically research on children’s health and well-being has been dominated by a focus on the prevalence of disorders, problems and disabilities. More recently, in response to the change to health promotion, positive attributes have been included in well-being and satisfaction measures. At this stage, there are still many fewer positive measures. Within the body of literature that exists in healthcare, healthcare design research, and well-being research, there are only a small number of participatory studies that focus on children and young people’s experience of hospitalisation, and an even smaller number that include children and young people’s experience of hospital environments. The picture that is created by the research that exists is patchy. There is a need for a more holistic understanding of children and young people’s experience of hospitalisation and of hospital environments from their own perspectives. Based on these gaps in current knowledge, two research questions were developed. The first was concerned with describing children and young people’s experience of the sociophysical environment of a paediatric hospital. The second question was concerned with understanding the role of the physical environment in children and young people’s feeling of well-being in a hospital environment. In addressing these questions, the intention was to identify attributes within the hospital setting which collectively comprise a supportive environment for children and young people and which contribute to children and young people’s feeling of well-being in a paediatric setting. The current study was conducted as an exploratory qualitative case study and carried out at the Children’s Hospital at Westmead, in Sydney, Australia. Using participatory research techniques, the sequence of the study included two pilot studies and the main study. The focus was on understanding the experiences of longer-term patients of a paediatric hospital environment. In the main study 25 children and young people, aged between 9-18 years, who had been in hospital for at least a week completed semi-structured interviews in which they talked about their response to the environment of the hospital and their experience of hospitalisation. Data analysis was completed using a combination of concept mapping and thematic analysis techniques. Preliminary findings were used as the basis of a further member-checking task carried out with a further six children and young people before conclusions were reached. The findings reveal that children and young people’s experience of a paediatric setting involves a number of major areas of influence including their personal situation, their social experience, their interaction with the physical environment, opportunities and characteristics of the organisation, and the effect of time. The findings also reveal that children’s feeling of well-being within this experience is linked to their ability to feel comfortable in the environment, to maintain a positive state of mind, and to remain positively engaged with the experience and the environment. This research reveals a dynamic relationship between children and young people and a paediatric environment that children and young people actively manage and shape. It reveals some of the key considerations in children and young people’s experience of hospitalisation. It also reveals why these considerations are important and what role they play in patients’ experience and feeling of well-being. These findings provide the basis for further research and they have implications for future design and research practice in paediatric healthcare settings.
|
18 |
Hospital de São Sebastião (1889-1905): um lugar para a ciência e um lazareto contra as epidemias / Hospital de São Sebastião (1889-1905): a place for science and a lazaretto against epidemicsOliveira, Paula Maria de January 2005 (has links)
Made available in DSpace on 2012-05-07T14:47:59Z (GMT). No. of bitstreams: 2
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
000001.pdf: 630544 bytes, checksum: d8c9825210ded6fd86f6edb0a678713f (MD5)
Previous issue date: 2005 / Procura reconstituir a história do Hospital de São Sebastião, que foi fundado na cidade do Rio de Janeiro, em 1889, como um dos últimos atos do Imperador D. Pedro II. O objetivo central foi a análise da relação da criação e estruturação do Hospital de São Sebastião com o debate sobre a causalidade das doenças, em especial a febre amarela, e com o desenvolvimento da medicina pasteuriana. Desta forma reconstitui o processo de criação da instituição, suas características arquitetônicas, e seu papel no processo de estruturação dos aparelhos institucionais, no campo da saúde pública, especialmente no cenário das epidemias. Analisa a arquitetura da instituição, relacionando-a com os debates existentes na época sobre arquiteturas hospitalares e com as correntes médicas hegemônicas na época.
|
19 |
Design mobilního rentgenu / Design of Mobile X-Ray ScannerStejskal, Pavel January 2014 (has links)
Master thesis deals with creating a new design of mobile x-ray machine. Three studies of design were created on the base of processed analysis, when the best one were chosen and developed as a final design. The final design takes into account all egonomics and technical requirements and creates a machine with less technical and more favorable view for patients. Simplification and better arranged the control panels bring easier service for operators.
|
20 |
Design mobilního rentgenu / Design of Mobile X-Ray ScannerStejskal, Pavel January 2014 (has links)
Master thesis deals with creating a new design of mobile x-ray machine. Three studies of design were created on the base of processed analysis, when the best one were chosen and developed as a final design. The final design takes into account all egonomics and technical requirements and creates a machine with less technical and more favorable view for patients. Simplification and better arranged the control panels bring easier service for operators.
|
Page generated in 0.0608 seconds