• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, Synthesis, Applications of Polymers and Dendrimers

Nimmagadda, Alekhya 16 November 2017 (has links)
WHO has reported that antibiotic resistance is the third major cause of human death all over the globe. Recent study, has focused on the development of new antibacterial resistance drugs. Herein, we tried to synthesis a series of polymers that can mimic the HDPs. HDPs can target the bacterial cell membrane and they have less chances to develop bacterial resistance. We synthesized the amphiphilic polycarbonates that are highly selective to Gram-positive bacteria, including multidrug resistant pathogens. The membrane disruption activity of these polymers was proved by fluorescence and TEM studies and the drug resistance study showed that the polymers don’t develop bacterial resistance. In order to further design the molecules that can target a broad spectrum of bacteria, we have designed a series of lipidated dendrimers that can target the Gram-positive and Gram-negative bacteria. These dendrimers mimic the HDPs and target the bacterial cell membrane. Dendrimers are reported to inhibit the formation of bacterial biofilm which makes them promising for their future development of antibiotic agents. Apart from the synthesis of polymers and dendrimers as antibacterial agents, we have designed a series of small molecular antibacterial agents that are based on the acylated reduced amide scaffold and small dimeric cyclic guanidine derivatives. These molecules display good potency against a panel of multidrug-resistant Gram-positive and Gram-negative bacterial strains. Meanwhile, they also effectively inhibit the biofilm formation. Mechanistic studies suggest that these compounds kill bacteria by compromising bacterial membranes, a mechanism analogous to that of host-defense peptides (HDPs). Lastly, we also demonstrate that these molecules have excellent in vivo activity against MRSA in a rat model. This class of compounds could lead to an appealing class of antibiotic agents combating drug-resistant bacterial strains.
2

Host and pathogen sensory systems as targets for therapeutic intervention

Kindrachuk, K. Jason 31 July 2007
A new paradigm for the treatment of infectious disease is through the modulation of innate immune responses. In this capacity, host defense peptides (HDPs) and synthetic Toll-like receptor 9 (TLR9) ligands have the greatest demonstrated potentials. The work presented here considers mechanisms for the improvement of these treatments through optimization, or in the case of HDPs the minimization, of the interactions of these ligands with sensory receptors.<p>Toll-like Receptor 9 activates the innate immune system in response to microbial DNA or immune-modulating oligodeoxynucleotides. While cell stimulation experiments demonstrate the preferential activating ability of CpG-containing nucleic acids, direct binding investigations have reached contradictory conclusions regarding the sequence-specificity of TLR9 ligand binding. To address this discrepancy the characterization of human TLR9 ligand binding properties is reported. TLR9 has a high degree of ligand specificity in being able to discriminate not only CpG dinucleotides, but also higher order six nucleotide motifs that mediate species-specific activation. However, TLR9 ligand binding is also functionally influenced by nucleic acids in a sequence-independent manner both in vitro and in cell proliferation experiments. A model is proposed in which TLR9 activation is mediated specifically by CpG-containing ligands while sensitivity of the receptor is modulated by the absolute concentration of nucleic acids in a sequence-independent fashion. <p>Host defense peptides are among the leading candidates to combat antibiotic resistant bacterial strains. Recently, HDPs have been demonstrated to function as ligands for the bacterial sensory kinase PhoQ resulting in the induction of virulence and adaptive responses. Thus, concerns have been raised regarding therapeutic applications of HDPs. Here a methodology is described that permits discrimination and quantification of the distinct, but related, peptide behaviors of direct antimicrobial activity and PhoQ ligand potential. Utilizing peptide derivatives of the model HDP Bac2A it is demonstrated that antimicrobial efficiency is significantly, and inversely, related to PhoQ ligand efficacy. This provides a rational basis for HDP selection with greater therapeutic potential and minimized potential for initiation of bacterial resistance.
3

Host and pathogen sensory systems as targets for therapeutic intervention

Kindrachuk, K. Jason 31 July 2007 (has links)
A new paradigm for the treatment of infectious disease is through the modulation of innate immune responses. In this capacity, host defense peptides (HDPs) and synthetic Toll-like receptor 9 (TLR9) ligands have the greatest demonstrated potentials. The work presented here considers mechanisms for the improvement of these treatments through optimization, or in the case of HDPs the minimization, of the interactions of these ligands with sensory receptors.<p>Toll-like Receptor 9 activates the innate immune system in response to microbial DNA or immune-modulating oligodeoxynucleotides. While cell stimulation experiments demonstrate the preferential activating ability of CpG-containing nucleic acids, direct binding investigations have reached contradictory conclusions regarding the sequence-specificity of TLR9 ligand binding. To address this discrepancy the characterization of human TLR9 ligand binding properties is reported. TLR9 has a high degree of ligand specificity in being able to discriminate not only CpG dinucleotides, but also higher order six nucleotide motifs that mediate species-specific activation. However, TLR9 ligand binding is also functionally influenced by nucleic acids in a sequence-independent manner both in vitro and in cell proliferation experiments. A model is proposed in which TLR9 activation is mediated specifically by CpG-containing ligands while sensitivity of the receptor is modulated by the absolute concentration of nucleic acids in a sequence-independent fashion. <p>Host defense peptides are among the leading candidates to combat antibiotic resistant bacterial strains. Recently, HDPs have been demonstrated to function as ligands for the bacterial sensory kinase PhoQ resulting in the induction of virulence and adaptive responses. Thus, concerns have been raised regarding therapeutic applications of HDPs. Here a methodology is described that permits discrimination and quantification of the distinct, but related, peptide behaviors of direct antimicrobial activity and PhoQ ligand potential. Utilizing peptide derivatives of the model HDP Bac2A it is demonstrated that antimicrobial efficiency is significantly, and inversely, related to PhoQ ligand efficacy. This provides a rational basis for HDP selection with greater therapeutic potential and minimized potential for initiation of bacterial resistance.
4

Design, Synthesis, Application of Biodegradable Polymers

Gide, Mussie 22 March 2018 (has links)
Bacterial infections have posed a serious threat to the public health due to the significant rise of the infections caused by antibiotic-resistant bacteria. There has been considerable interest in the development of antimicrobial agents which mimic the natural HDPs, and among them biodegradable polymers are newly discovered drug candidates with ease of synthesis and low manufacture cost compared to synthetic host defense peptides. Herein, we present the synthesis of biocompatible and biodegradable polymers including polycarbonate polymers, unimolecular micelle hyperbranched polymers and dendrimers that mimic the antibacterial mechanism of HDPs by compromising bacterial cell membranes. The developed amphiphilic polycarbonates are highly selective to Gram-positive bacteria, including multidrug-resistant pathogens and the unimolecular micelle hyperbranched polymers showed promising broad-spectrum activity. However, lipidated amphiphilic dendrimers with low molecular weight display potent and selective antimicrobial activity against both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. In addition to antibacterial activity against planktonic bacteria, these dendrimers were also shown to inhibit bacterial biofilms effectively. These class of polymers may lead to a useful generation of antibiotic agents with practical applications.
5

Gamma AApeptides as Host Defense Peptide Mimics

Li, Yaqiong 16 May 2016 (has links)
There has been increasing concern regarding the emergence of multi-drug resistant pathogens. The resistance develops when pathogens, especially bacteria, are frequently exposed to conventional antibiotics, as they are heavily used in both human and livestock. This is due to the high target specificity of conventional antibiotics, which places pathogens in high selective pressures and eventually results in drug resistant by mutations. To address this issue, global actions and cooperation are needed. At the same time, new technologies and strategies need to be developed. Host defense peptides (HDPs) are widely found in the innate immune system. They show both direct antimicrobial properties and immunomodulatory activities. The multifaceted functions of HPDs make them less likely to promote antimicrobial resistance. Thus, they are promising as new therapeutics to treat multi-drug resistant infections. In fact, several drug candidates derived from HDPs have entered the clinical trial, but none of them got into the clinic. This is due to several challenges associated with HDPs, such as low in vivo stability, high cost of manufacturing, and toxicity to mammalian cells. In this dissertation, we explored the ability of a new type of unnatural scaffolds (γ-AApeptides) to mimic the functions of HDPs, including both broad spectrum antimicrobial properties and immunomodulatory activities. Furthermore, the efforts to identify simpler and more drug like γ-AApeptide based antimicrobial agents were also discussed. The findings in this dissertation may lead to the development of potential drug candidates to treat multi-drug resistant infections.
6

Contribution à l'analyse post-génomique de l'interaction entre le peuplier et Melampsora larici-populina, le champignon biotrophe responsable de la maladie de la rouille foliaire / Post-genomic analysis of the poplar-poplar rust fungus Melampsora larici-populina interaction

Pêtre, Benjamin 12 November 2012 (has links)
Melampsora larici-Populina est un champignon biotrophe qui infecte le peuplier et cause la maladie de la rouille foliaire, entraînant d'importants dégâts dans les peupleraies. Un des objectifs de l'UMR Interactions Arbres/Microorganismes est de caractériser les déterminants moléculaires de ce pathosystème. Au cours de cette thèse, des approches post-Génomiques ont permis de mener à bien quatre projets de recherche. Premièrement, l'analyse du transcriptome des temps précoces de l'interaction peuplier/M. larici-Populina a révélé un transporteur de sulfate de peuplier fortement induit par l'infection (chapitre II). Deuxièmement, l'analyse phylogénomique de la famille des thaumatin-Like proteins (TLP) a entre autres mis en évidence certains clades spécifiquement associés aux réponses aux stress chez le peuplier (chapitre III). Troisièmement, le gène codant la petite protéine sécrétée Risp de fonction inconnue est fortement induit lors des réponses de défense du peuplier et n'a pas d'homologue chez les autres plantes. La protéine recombinante est intrinsèquement désordonnée et présente une double activité de protéine antifongique envers M. larici-Populina et d'éliciteur endogène des réponses de défense chez le peuplier (chapitre IV et V). La combinaison de ces deux propriétés n'a jamais été rapportée chez une protéine de plante. Enfin, les gènes MlpP4.1 et MlpH1.1 de M. larici-Populina codent des petites protéines sécrétées riches en cystéines et de fonction inconnue, considérées comme des effecteurs candidats (chapitre VI). L'expression de MlpP4.1 et MlpH1.1 est très fortement induite lors de l'infection des feuilles de peupliers et des activités de virulence ont été observées chez Arabidopsis thaliana. Les analyses biochimique et structurale des protéines recombinantes sont en cours et ont déjà permis de démontrer la forte stabilité de MlpP4.1, probablement liée à la présence de plusieurs ponts disulfures. A l'aide des protéines recombinantes, plusieurs partenaires protéiques ont été identifiés chez les plantes permettant d'établir des hypothèses quant à leur rôle / Melampsora larici-Populina is a biotrophic fungus that infects poplar and causes the foliar rust disease, leading to severe damages in plantations. A major aim of the Tree- Microbe Interactions department is to characterize molecular determinants of the pathosystem. During this thesis, four research projects were achieved through post-Genomic approaches. First, transcriptome analysis of the early interaction between poplar and M. larici-Populina revealed a fungal-Induced host sulfate transporter (chapter II). Secondly, the phylogenomic analysis of the thaumatin-Like protein (TLP) family uncovered some clades specifically associated with stress responses in poplar (chapterIII). Thirdly, the gene encoding the small secreted protein of unknown function Risp is strongly induced during poplar defense reponses and has no homolog in other plants. The recombinant protein is intrinsically disordered and presents a dual activity as an antifungal protein against M. larici-Populina and as an endogenous elicitor of defense responses in poplar (chapter IV and V). The combination of both properties in a single protein has never been reported in plants. Finally, M. larici-Populina MlpP4.1 and MlpH1.1 genes encode cysteine-Rich small-Secreted proteins of unknown fonction, considered as candidate effectors (chapter VI). MlpP4.1 and MlpH1.1 expression is strongly induced during poplar leaf colonization, and virulence activities were observed in Arabidopsis thaliana. Biochemical and structural analyses of recombinant proteins are ongoing and already revealed the strong stability of MlpP4.1, likely due to the presence of several disulfide bridges. Several plant partners of the recombinant proteins were identified and have allowed for setting hypotheses about their role

Page generated in 0.0925 seconds