• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and demonstration of a new non-equilibrium rate-based process model for the hot potassium carbonate process.

Ooi, Su Ming Pamela January 2009 (has links)
Chemical absorption and desorption processes are two fundamental operations in the process industry. Due to the rate-controlled nature of these processes, classical equilibrium stage models are usually inadequate for describing the behaviour of chemical absorption and desorption processes. A more effective modelling method is the non-equilibrium rate-based approach, which considers the effects of the various driving forces across the vapour-liquid interface. In this thesis, a new non-equilibrium rate-based model for chemical absorption and desorption is developed and applied to the hot potassium carbonate process CO₂ Removal Trains at the Santos Moomba Processing Facility. The rate-based process models incorporate rigorous thermodynamic and mass transfer relations for the system and detailed hydrodynamic calculations for the column internals. The enhancement factor approach was used to represent the effects of the chemical reactions. The non-equilibrium rate-based CO₂ Removal Train process models were implemented in the Aspen Custom Modeler® simulation environment, which enabled rigorous thermodynamic and physical property calculations via the Aspen Properties® software. Literature data were used to determine the parameters for the Aspen Properties® property models and to develop empirical correlations when the default Aspen Properties® models were inadequate. Preliminary simulations indicated the need for adjustments to the absorber column models, and a sensitivity analysis identified the effective interfacial area as a suitable model parameter for adjustment. Following the application of adjustment factors to the absorber column models, the CO₂ Removal Train process models were successfully validated against steady-state plant data. The success of the Aspen Custom Modeler® process models demonstrated the suitability of the non-equilibrium rate-based approach for modelling the hot potassium carbonate process. Unfortunately, the hot potassium carbonate process could not be modelled as such in HYSYS®, Santos’s preferred simulation environment, due to the absence of electrolyte components and property models and the limitations of the HYSYS® column operations in accommodating chemical reactions and non-equilibrium column behaviour. While importation of the Aspen Custom Modeler® process models into HYSYS® was possible, it was considered impractical due to the significant associated computation time. To overcome this problem, a novel approach involving the HYSYS® column stage efficiencies and hypothetical HYSYS® components was developed. Stage efficiency correlations, relating various operating parameters to the column performance, were derived from parametric studies performed in Aspen Custom Modeler®. Preliminary simulations indicated that the efficiency correlations were only necessary for the absorber columns; the regenerator columns were adequately represented by the default equilibrium stage models. Hypothetical components were created for the hot potassium carbonate system and the standard Peng-Robinson property package model in HYSYS® was modified to include tabular physical property models to accommodate the hot potassium carbonate system. Relevant model parameters were determined from literature data. As for the Aspen Custom Modeler® process models, the HYSYS® CO₂ Removal Train process models were successfully validated against steady-state plant data. To demonstrate a potential application of the HYSYS® process models, dynamic simulations of the two most dissimilarly configured trains, CO₂ Removal Trains #1 and #7, were performed. Simple first-order plus dead time (FOPDT) process transfer function models, relating the key process variables, were derived to develop a diagonal control structure for each CO₂ Removal Train. The FOPDT model is the standard process engineering approximation to higher order systems, and it effectively described most of the process response curves for the two CO₂ Removal Trains. Although a few response curves were distinctly underdamped, the quality of the validating data for the CO₂ Removal Trains did not justify the use of more complex models than the FOPDT model. While diagonal control structures are a well established form of control for multivariable systems, their application to the hot potassium carbonate process has not been documented in literature. Using a number of controllability analysis methods, the two CO₂ Removal Trains were found to share the same optimal diagonal control structure, which suggested that the identified control scheme was independent of the CO₂ Removal Train configurations. The optimal diagonal control structure was tested in dynamic simulations using the MATLAB® numerical computing environment and was found to provide effective control. This finding confirmed the results of the controllability analyses and demonstrated how the HYSYS® process model could be used to facilitate the development of a control strategy for the Moomba CO₂ Removal Trains. In conclusion, this work addressed the development of a new non-equilibrium rate-based model for the hot potassium carbonate process and its application to the Moomba CO₂ Removal Trains. Further work is recommended to extend the model validity over a wider range of operating conditions and to expand the dynamic HYSYS® simulations to incorporate the diagonal control structures and/or more complex control schemes. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1350259 / Thesis (Ph.D.) - University of Adelaide, School of Chemical Engineering, 2009
2

Development and demonstration of a new non-equilibrium rate-based process model for the hot potassium carbonate process.

Ooi, Su Ming Pamela January 2009 (has links)
Chemical absorption and desorption processes are two fundamental operations in the process industry. Due to the rate-controlled nature of these processes, classical equilibrium stage models are usually inadequate for describing the behaviour of chemical absorption and desorption processes. A more effective modelling method is the non-equilibrium rate-based approach, which considers the effects of the various driving forces across the vapour-liquid interface. In this thesis, a new non-equilibrium rate-based model for chemical absorption and desorption is developed and applied to the hot potassium carbonate process CO₂ Removal Trains at the Santos Moomba Processing Facility. The rate-based process models incorporate rigorous thermodynamic and mass transfer relations for the system and detailed hydrodynamic calculations for the column internals. The enhancement factor approach was used to represent the effects of the chemical reactions. The non-equilibrium rate-based CO₂ Removal Train process models were implemented in the Aspen Custom Modeler® simulation environment, which enabled rigorous thermodynamic and physical property calculations via the Aspen Properties® software. Literature data were used to determine the parameters for the Aspen Properties® property models and to develop empirical correlations when the default Aspen Properties® models were inadequate. Preliminary simulations indicated the need for adjustments to the absorber column models, and a sensitivity analysis identified the effective interfacial area as a suitable model parameter for adjustment. Following the application of adjustment factors to the absorber column models, the CO₂ Removal Train process models were successfully validated against steady-state plant data. The success of the Aspen Custom Modeler® process models demonstrated the suitability of the non-equilibrium rate-based approach for modelling the hot potassium carbonate process. Unfortunately, the hot potassium carbonate process could not be modelled as such in HYSYS®, Santos’s preferred simulation environment, due to the absence of electrolyte components and property models and the limitations of the HYSYS® column operations in accommodating chemical reactions and non-equilibrium column behaviour. While importation of the Aspen Custom Modeler® process models into HYSYS® was possible, it was considered impractical due to the significant associated computation time. To overcome this problem, a novel approach involving the HYSYS® column stage efficiencies and hypothetical HYSYS® components was developed. Stage efficiency correlations, relating various operating parameters to the column performance, were derived from parametric studies performed in Aspen Custom Modeler®. Preliminary simulations indicated that the efficiency correlations were only necessary for the absorber columns; the regenerator columns were adequately represented by the default equilibrium stage models. Hypothetical components were created for the hot potassium carbonate system and the standard Peng-Robinson property package model in HYSYS® was modified to include tabular physical property models to accommodate the hot potassium carbonate system. Relevant model parameters were determined from literature data. As for the Aspen Custom Modeler® process models, the HYSYS® CO₂ Removal Train process models were successfully validated against steady-state plant data. To demonstrate a potential application of the HYSYS® process models, dynamic simulations of the two most dissimilarly configured trains, CO₂ Removal Trains #1 and #7, were performed. Simple first-order plus dead time (FOPDT) process transfer function models, relating the key process variables, were derived to develop a diagonal control structure for each CO₂ Removal Train. The FOPDT model is the standard process engineering approximation to higher order systems, and it effectively described most of the process response curves for the two CO₂ Removal Trains. Although a few response curves were distinctly underdamped, the quality of the validating data for the CO₂ Removal Trains did not justify the use of more complex models than the FOPDT model. While diagonal control structures are a well established form of control for multivariable systems, their application to the hot potassium carbonate process has not been documented in literature. Using a number of controllability analysis methods, the two CO₂ Removal Trains were found to share the same optimal diagonal control structure, which suggested that the identified control scheme was independent of the CO₂ Removal Train configurations. The optimal diagonal control structure was tested in dynamic simulations using the MATLAB® numerical computing environment and was found to provide effective control. This finding confirmed the results of the controllability analyses and demonstrated how the HYSYS® process model could be used to facilitate the development of a control strategy for the Moomba CO₂ Removal Trains. In conclusion, this work addressed the development of a new non-equilibrium rate-based model for the hot potassium carbonate process and its application to the Moomba CO₂ Removal Trains. Further work is recommended to extend the model validity over a wider range of operating conditions and to expand the dynamic HYSYS® simulations to incorporate the diagonal control structures and/or more complex control schemes. / http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1350259 / Thesis (Ph.D.) - University of Adelaide, School of Chemical Engineering, 2009
3

Koldioxidavskiljning på ett biobränsleeldat kraftvärmeverk : Simulering av två avskiljningstekniker vid Karlstad Energis kraftvärmeverk, Heden 3 / Carbon dioxide capture at a biofuel-fired CHP-plant : Simulation of two separation techniques at Karlstad Energy's CHP-plant, Heden 3

Bergström, Sandra January 2020 (has links)
BECCS (Bioenergy Carbon Capture and Storage) is an important part of measures to achieve zero net emissions globally by 2050, as the technology can create carbon sinks. However, the technology is very energy-intensive and expensive, and affects the existing systems at implementation. The purpose of this study is to investigate the possibility of implementing BECCS at Karlstad Energy's biofuel-fired CHP-plant, Heden 3. The goal is, by simulation in CHEMCAD, to generate energy consumption key figures for two different separation technologies (MEA-MonoEthanolAmine and HPC-HotPotassiumCarbonate) with 90 % separation rate in three different operating cases. In addition, the systemic impact on Heden 3 will be determined by analyzing three different scenarios. In the first scenario fuel consumption is kept unchanged and steam to the carbon capture system is extracted before the turbine. In the second scenario fuel supply increases to meet the district heating needs of the existing system and steam to the carbon capture system is extracted before the turbine. In the third scenario fuel supply is kept unchanged and steam is extracted from the turbine. In addition, the study investigates various transport options for storage of carbon dioxide and finally calculate the total carbon sink Karlstad Energy can contribute to. The results show that production of electricity is reduced by 65-87 % after implementation of MEA and 151-238 % for HPC in the first scenario. Without heat utilization in the carbon capture system, heat production is reduced by 66-86 % with MEA and 54-76% for HPC. In the second scenario, a fuel supply increase by 134 % is required to meet the needs, which corresponds to more than twice the boiler capacity and results in a reduced production of electricity by 247 %. In the third scenario, production of electricity is reduced by 104 % at maximum load with HPC. The HPC system has high-quality heat to utilize, probably enough to meet the district heating needs without increasing the boiler power. But heat optimization opportunities need to be further explored in order to be able to express something to a greater extent. The MEA process does not offer the same opportunities for heat utilization. As the CHP-plant have heat as the main product, HPC would be a more suitable alternative despite the high load on the electricity production. The performance of the carbon dioxide plant seems to vary between different operating cases and it can be concluded that the variation is related to the flue gas composition rather than being load dependent. Transport of carbon dioxide by train has the lowest carbon dioxide emissions and requires the least number of cargoes for transport from Karlstad to storage in Norway. However, this is not relevant at present because of the lack of rail connection to the plant. Total carbon sink is approximately 127 000 tonnes per year if the boiler capacity is assumed to be unchanged. / BECCS (Bioenergy Carbon Capture and Storage) är en viktig del av åtgärder i målet om att nå nollnetto utsläpp år 2050 globalt, då tekniken kan skapa kolsänkor. Tekniken är dock mycket energikrävande och dyr, och påverkar de befintliga systemen vid implementering. Syftet med den här studien är att undersöka möjligheten att implementera BECCS på Karlstad Energis biobränsleeldade kraftvärmeverk, Heden 3. Målet är att, genom simulering i CHEMCAD, ta fram förbrukningsnyckeltal för två olika avskiljningstekniker (MEA-MonoEtanolAmin och HPC-HotPotassiumCarbonate) med 90 % avskiljningsgrad vid tre olika driftfall. Dessutom ska systempåverkan på Heden 3 fastställas genom analys av tre olika scenarier. I första scenariot hålls bränsleförbrukningen oförändrad och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det andra scenariot ökar bränsletillförseln för att tillgodose fjärrvärmebehovet i det befintliga systemet och ånga till koldioxidavskiljningssystemet tappas av innan turbinen. I det tredje scenariot hålls bränsletillförseln oförändrad och ånga extraheras från turbinen. Därtill undersöks i studien olika transportmöjligheter till lagringsplats av koldioxiden och slutligen beräknas den totala kolsänkan Karlstad Energi kan bidra med. Resultaten visar att elproduktionen i det första scenariot reduceras med 65-87 % för MEA och för HPC 151-238 %. Utan värmeutnyttjande från koldioxidavskiljningssystemen reduceras värmeproduktionen med 66-86 % med MEA och 54-76 % med HPC. I det andra scenariot krävs att bränsletillförseln ökar med 134 % för att tillgodose behoven vilket motsvarar mer än dubbla panneffekten och innebär en reducerad elproduktion på 247 %. I det tredje scenariot reduceras elproduktionen med 104 % vid maximal last med HPC.  I HPC-systemet finns högvärdig värme att utnyttja, sannolikt tillräckligt mycket för att kunna uppfylla fjärrvärmebehovet utan att öka panneffekten. Men värmeoptimeringsmöjligheter behöver undersökas ytterligare för att kunna uttrycka något i större omfattning. I MEA-processen finns inte samma möjligheter till värmeutnyttjande. Eftersom kraftvärmeverket har värme som främsta produkt skulle således HPC vara ett lämpligare alternativ trots den höga belastningen på elproduktionen. Koldioxidanläggningens prestanda förefaller variera mellan olika driftfall och med en enklare undersökning kunde slutsatsen dras att variationen har ett samband med rökgassammansättningen snarare än att det är ett lastberoende. Transport av koldioxid med tåg har lägst koldioxidutsläpp och kräver minst antal laster för transport från Karlstad till lagring i Norge. Detta är dock inte aktuellt i dagsläget på grund av avsaknaden av räls in till verket. Den totala kolsänkan är cirka 127 000 ton per år om pannan antas köras oförändrat.

Page generated in 0.0663 seconds