1 |
Optimization of Algorithms Using Extensions of Dynamic ProgrammingAbouEisha, Hassan M. 09 April 2017 (has links)
We study and answer questions related to the complexity of various important problems such as: multi-frontal solvers of hp-adaptive finite element method, sorting and majority. We advocate the use of dynamic programming as a viable tool to study optimal algorithms for these problems. The main approach used to attack these problems is modeling classes of algorithms that may solve this problem using a discrete model of computation then defining cost functions on this discrete structure that reflect different complexity measures of the represented algorithms. As a last step, dynamic programming algorithms are designed and used to optimize those models (algorithms) and to obtain exact results on the complexity of the studied problems.
The first part of the thesis presents a novel model of computation (element partition tree) that represents a class of algorithms for multi-frontal solvers along with cost functions reflecting various complexity measures such as: time and space. It then introduces dynamic programming algorithms for multi-stage and bi-criteria optimization of element partition trees. In addition, it presents results based on optimal element partition trees for famous benchmark meshes such as: meshes with point and edge singularities. New improved heuristics for those benchmark meshes were ob- tained based on insights of the optimal results found by our algorithms.
The second part of the thesis starts by introducing a general problem where different problems can be reduced to and show how to use a decision table to model such problem. We describe how decision trees and decision tests for this table correspond to adaptive and non-adaptive algorithms for the original problem. We present exact bounds on the average time complexity of adaptive algorithms for the eight elements sorting problem. Then bounds on adaptive and non-adaptive algorithms for a variant of the majority problem are introduced. Adaptive algorithms are modeled as decision trees whose depth reflects the worst-case time complexity and average depth indicates the average-case time complexity. Non-adaptive algorithms are represented as decision tests whose size expresses the worst-case time complexity. Finally, we present a dynamic programming algorithm that finds a minimum decision test (minimum reduct) for a given decision table.
|
2 |
Finite element modeling of electromagnetic radiation and induced heat transfer in the human bodyKim, Kyungjoo 24 September 2013 (has links)
This dissertation develops adaptive hp-Finite Element (FE) technology and a parallel sparse direct solver enabling the accurate modeling of the absorption of Electro-Magnetic (EM) energy in the human head. With a large and growing number of cell phone users, the adverse health effects of EM fields have raised public concerns. Most research that attempts to explain the relationship between exposure to EM fields and its harmful effects on the human body identifies temperature changes due to the EM energy as the dominant source of possible harm. The research presented here focuses on determining the temperature distribution within the human body exposed to EM fields with an emphasis on the human head. Major challenges in accurately determining the temperature changes lie in the dependence of EM material properties on the temperature. This leads to a formulation that couples the BioHeat Transfer (BHT) and Maxwell equations. The mathematical model is formed by the time-harmonic Maxwell equations weakly coupled with the transient BHT equation. This choice of equations reflects the relevant time scales. With a mobile device operating at a single frequency, EM fields arrive at a steady-state in the micro-second range. The heat sources induced by EM fields produce a transient temperature field converging to a steady-state distribution on a time scale ranging from seconds to minutes; this necessitates the transient formulation. Since the EM material properties depend upon the temperature, the equations are fully coupled; however, the coupling is realized weakly due to the different time scales for Maxwell and BHT equations. The BHT equation is discretized in time with a time step reflecting the thermal scales. After multiple time steps, the temperature field is used to determine the EM material properties and the time-harmonic Maxwell equations are solved. The resulting heat sources are recalculated and the process continued. Due to the weak coupling of the problems, the corresponding numerical models are established separately. The BHT equation is discretized with H¹ conforming elements, and Maxwell equations are discretized with H(curl) conforming elements. The complexity of the human head geometry naturally leads to the use of tetrahedral elements, which are commonly employed by unstructured mesh generators. The EM domain, including the head and a radiating source, is terminated by a Perfectly Matched Layer (PML), which is discretized with prismatic elements. The use of high order elements of different shapes and discretization types has motivated the development of a general 3D hp-FE code. In this work, we present new generic data structures and algorithms to perform adaptive local refinements on a hybrid mesh composed of different shaped elements. A variety of isotropic and anisotropic refinements that preserve conformity of discretization are designed. The refinement algorithms support one- irregular meshes with the constrained approximation technique. The algorithms are experimentally proven to be deadlock free. A second contribution of this dissertation lies with a new parallel sparse direct solver that targets linear systems arising from hp-FE methods. The new solver interfaces to the hierarchy of a locally refined mesh to build an elimination ordering for the factorization that reflects the h-refinements. By following mesh refinements, not only the computation of element matrices but also their factorization is restricted to new elements and their ancestors. The solver is parallelized by exploiting two-level task parallelism: tasks are first generated from a parallel post-order tree traversal on the assembly tree; next, those tasks are further refined by using algorithms-by-blocks to gain fine-grained parallelism. The resulting fine-grained tasks are asynchronously executed after their dependencies are analyzed. This approach effectively reduces scheduling overhead and increases flexibility to handle irregular tasks. The solver outperforms the conventional general sparse direct solver for a class of problems formulated by high order FEs. Finally, numerical results for a 3D coupled BHT with Maxwell equations are presented. The solutions of this Maxwell code have been verified using the analytic Mie series solutions. Starting with simple spherical geometry, parametric studies are conducted on realistic head models for a typical frequency band (900 MHz) of mobile phones. / text
|
Page generated in 0.0148 seconds