Spelling suggestions: "subject:"hsp70 inhibitor""
1 |
Die Bedeutung des Hitzeschockproteins HSP90 für die Strahlenempfindlichkeit von Tumorzellen unterschiedlicher Entitäten / The Role of the heat shock protein HSP90 for the radiation response of tumor cells of different entitiesStingl, Lavinia January 2012 (has links) (PDF)
Krebs ist die zweithäufigste Todesursache in Deutschland. Für die Behandlung von Tumorerkrankungen wird unter anderen die Strahlentherapie angewendet. Allerdings ist die Wirkung der Bestrahlung durch die Radiotoxizität auf normalem Gewebe sowie durch die Radioresistenz vieler Tumoren bei klinisch relevanten Dosen limitiert. Ein vielversprechendes Target für die Radiosensibilisierung von Tumorzellen scheint das Hitzeschockprotein HSP90 zu sein, ein wichtiges molekulares Chaperon, das für die Faltung, Aktivierung, Translokation und Degradation der so genannten Klientenproteine zuständig ist. Durch die pharmakologische Blockierung seiner Funktion wird die simultane Degradation multipler HSP90 Klientenproteine eingeleitet, darunter Radioresistenz-assoziierte Proteine wie RAF-1, AKT, EGFR, Survivin, DNA-Reparaturproteine. Verschiedene Studien belegen das Potential der HSP90 Inhibitoren Geldanamycin und seiner Derivaten als Radiosensibilisatoren. Im Gegensatz zu diesen Substanzen sind die neuartigen HSP90 Inhibitoren NVP-AUY922 und NVP-BEP800 wasserlöslich und nicht hepatotoxisch. Im ersten Teil der Arbeit wurde die Wirkung von NVP-AUY922 und NVP-BEP800 (200 nM, 24 h vor der Bestrahlung) auf die Strahlenempfindlichkeit humaner Tumorzelllinien unterschiedlicher Entitäten, darunter eine Lungenkarzinomzellinie A549, eine Fibrosarkomzelllinie HT1080, sowie zwei Glioblastomzelllinien GaMG und SNB19, untersucht. Die neuartigen HSP90 Inhibitoren zeigten in Kolonietest eine strahlensensibilisierende Wirkung in allen getesteten Tumorzelllinien. Weiterhin wurde mit diversen Methoden den Mechanismus der Radiosensibilisierung untersucht. Die HSP90 Inhibition erhöhte den Anteil der Zellen mit hypodiploiden DNA-Gehalt in den meisten untersuchten Tumorzelllinien. Außerdem induzierte die HSP90 Inhibition die Depletion der anti-apoptotischen Proteine AKT, pAKT und RAF-1 in allen Tumorzelllinien. Wie die erhöhte Expression von beiden Apoptosemarkern, aktivierte Caspase-3 und inaktiviertes PARP, nahe legt, wurde verstärkt die Caspase-abhängige Apoptose in den meisten untersuchten Tumorzelllinien nach HSP90 Inhibition eingeleitet. Laut Comet Assay induzierte die HSP90 Inhibition eine geringere DNA-Fragmentierung in bestrahlten Tumorzellen, gleichzeitig konnte aber eine langsamere Restitution der chromosomalen DNA festgestellt werden. Über die Messungen der γH2AX-Expression als Marker für DNA-Doppelstrangbrüche konnte eine erhöhte Induktion von DNA-Schäden nach HSP90 Inhibition und Bestrahlung sowie eine verlangsamte Reparatur der induzierten DNA-Schäden gemessen werden. Diese korrelierte mit der Depletion der DNA-Reparaturproteine KU70/KU80. Die HSP90 Inhibition führte zusätzlich zu einem ausgeprägten G2/M-Arrest, der durch die Bestrahlung verstärkt werden konnte. NVP-AUY922 induzierte außerdem eine Depletion der S-Phase. Die Depletion der Zellzyklus-regulierenden Proteine CDK1 und CDK4 sowie pRB korrelierte mit den beobachteten Zellzyklusstörungen. Die hier gewonnenen Ergebnisse verdeutlichen, dass der komplexe Mechanismus der Radiosensibilisierung nach HSP90 Inhibition die simultane Degradation diverser HSP90 Klientenproteine involviert, was verschiedene zelluläre Auswirkungen hat: verlangsamte Zellteilung durch anhaltende Zellzyklusstörungen, erhöhte DNA-Schäden und Verlangsamung der Reparatur der DNA-Schäden nach Bestrahlung sowie Apoptoseinduktion. Die HSP90 Inhibition induzierte gleichzeitig die Expression der Hitzeschockproteine HSP90 und HSP70, deren anti-apoptotischen Funktionen die radiosensibilisierenden Effekte der HSP90 Inhibitoren vermindern können. In dieser Arbeit wurden zwei Strategien getestet, um die Hochregulation von HSP90/HSP70 nach HSP90 Inhibition in den Tumorzelllinien A549 und GaMG zu unterdrücken. Zum einen wurden siRNAs gegen die stressinduzierbare α-Isoform von HSP90 angewendet, zum anderen wurde KNK437, eine Substanz die die Expression der HSP auf Transkriptionsebene unterdrückt, eingesetzt. Im zweiten Teil der Arbeit konnte gezeigt werden, dass die Transfektion mit siRNA gegen HSP90α gefolgt von NVP-AUY922 die Hochregulation von HSP90α um circa 50% unterdrückte. Allerdings wurde dadurch keine Erhöhung der NVP-AUY922-vermittelten Radiosensibilisierung erreicht. Es wurden außerdem keine signifikanten Veränderungen betreffend der Induktion und Reparatur der DNA-Schäden, Zellzyklusverteilung, Apoptoseinduktion sowie Expression der getesteten HSP90 Klientenproteine im Vergleich zu alleiniger HSP90 Inhibition festgestellt. Im dritten Teil der Arbeit konnte gezeigt werden, dass die simultane Behandlung mit NVP-AUY922 und KNK437 die NVP-AUY922-vermittelte Hochregulation von HSP90 und HSP70 in beiden Tumorzelllinien temporär unterdrückt. Obwohl die alleinige Behandlung mit KNK437 in der A549-Tumorzelllinie laut Kolonietest radiosensibilisierend wirkte, konnte die simultane Behandlung mit beiden Inhibitoren die NVP-AUY922-vermittelte Radiosensibilisierung nicht erhöhen. Obwohl die Unterdrückung der Stressantwort nach HSP90 Inhibition mittels KNK437 in beiden Tumorzelllinien einen anhaltenden G2/M-Arrest induzierte, blieb die Expression der anti-apoptotischen HSP90-Klientenproteine AKT und RAF-1 unverändert im Vergleich zu NVP-AUY922. Außerdem wurde die inhibierende Wirkung von NVP-AUY922 auf die Reparatur der strahleninduzierten DNA-Schäden nicht erhöht. Die hier gezeigten in vitro Ergebnisse unterstützen die Anwendung von NVP-AUY922 und NVP-BEP800 für in vivo Studien sowie in klinischen Studien alleine oder in Kombination mit der Bestrahlung. Unsere Arbeit ist von besonderem Interesse für die Strahlentherapie, da NVP-AUY922 bereits in klinischen Studien getestet wird. / Besides important improvement of tumor therapy, which increased the chance of survival for the patients, cancer remains the second cause of death in Germany. Among others, radiotherapy is one of the treatment options for tumor diseases. However, radiotherapy has some limitations due to the radiotoxicity on normal tissue and to the radioresistance of several tumors at therapeutic doses. One of the promising radiosensitizers of tumor cells seems to be the heat shock protein HSP90 – an essential molecular chaperone involved in folding, activation, translocation and degradation of its so called client proteins. The pharmacological inhibition of its chaperone function leads to simultaneous degradation of several HSP90 client proteins such as RAF-1, AKT, EGFR, survivin, DNA repair proteins and consequent disruption of several radioresistance-associated pathways. Several studies proved the radiosensitizing ability of geldanamycin and its derivates. In contrast to these drugs, the synthetic HSP90 inhibitors NVP-AUY922 and NVP-BEP800 are more water soluble and not hepatotoxic. In the first part of this work, we tested the effect of NVP-AUY922 and NVP-BEP800 (200 nM, 24 h prior irradiation) on the radiation response of tumor cell lines of different entities: the lung carcinoma A549, the fibrosarcoma HT1080 and the glioblastoma cell lines GaMG and SNB19. The colony forming assay revealed that pre-treatment with the novel HSP90 inhibitors increased the radiosensitivity of all tested tumor cell lines. Furthermore we investigated the mechanism of radiosensitization after HSP90 inhibition. HSP90 inhibition led to an increased percentage of tumor cells with hypodiploid DNA content (subG1 fraction) in most tested cell lines. Moreover, it led to the depletion of the anti-apoptotic HSP90 client proteins AKT, pAKT and RAF-1. In addition, it increased the pro-apoptotic caspase-3 and PARP cleavage in most of the tested cell lines. Our comet assay revealed a lower DNA fragmentation in drug-treated and irradiated tumor cells, but a slower restoration of DNA damage. Measurements of γH2AX expression as a sensitive marker for DNA-DSB showed an increased induction of DNA damage as well as DNA repair protraction in drug-treated and irradiated tumor cells. Inhibition of DNA repair after HSP90 inhibition was supported by the depletion of the DNA repair proteins KU70/KU80. Moreover the novel HSP90 inhibitors led to an increased G2/M-arrest, which could be enhanced by irradiation. In addition, NVP-AUY922 induced S-Phase depletion. The cell cycle disturbances correlated with the drug-mediated degradation of cell cycle regulating proteins CDK4, CDK1 and pRB. In conclusion, our results made clear that the complex mechanism of radiosensitization involves simultaneous degradation of several HSP90 client proteins, thus causing slower proliferation of the tumor cells due to dramatic cell cycle disturbances, increased DNA damage and protraction of DNA repair after irradiation as well as apoptosis induction. However, the radiosensitizing effect of the novel HSP90 inhibitors might be limited by the simultaneous drug-mediated induction of the expression of the anti-apoptotic heat shock proteins HSP90 and HSP70. In this study, we tested two strategies to suppress the drug-mediated up-regulation of HSP90 and HSP70 in the tumor cell lines A549 and GaMG. The first strategy was the siRNA-mediated down-regulation of the stress-inducible isoform HSP90α, combined with drug treatment and irradiation. The second strategy was the inhibition of the stress response by simultaneous treatment with the HSF-1 inhibitor KNK437. In the second part of this work we could show that pre-silencing of HSP90α followed by treatment with NVP-AUY922 indeed reduced the drug-mediated up-regulation of HSP90α to about 50%. However, it did not enhance the radiosensitizing effect of NVP-AUY922. In addition, it did not show any significant changes concerning the induction and the repair of DNA damage, the cell cycle distribution or the expression of the tested HSP90 client proteins AKT, RAF-1, CDK1 and CDK4 compared with drug-only treatment. In the third part of this work we could show that simultaneous treatment with NVP-AUY922 and KNK437 temporary suppressed the NVP-AUY922-mediated up-regulation of HSP90 and HSP70. Although treatment with KNK437 alone increased the radiosensitivity of A549 tumor cells as shown by colony forming assays, simultaneous treatment with both inhibitors did not increase NVP-AUY922-mediated radiosensitization in both tumor cell lines. Our cell cycle analyses revealed that the suppression of stress response after HSP90 inhibition by KNK437 led to a sustained G2/M-arrest in both tumor cell lines. However, the expression of the anti-apoptotic proteins AKT and RAF-1 remained unchanged compared with HSP90 inhibition alone. The evaluation of γH2AX expression showed that simultaneous treatment did not enhance NVP-AUY922-mediated inhibition of DNA repair after irradiation. Our in vitro results support the use of the novel HSP90 inhibitors in in vivo studies as well as in clinical studies alone or in combination with irradiation. This work is of particular interest for the radiation therapy of cancer, because the novel HSP90 inhibitor NVP-AUY922 is currently in clinical trials.
|
2 |
Simultaneously targeting hypoxic cancer cells by hsp90 inhibitor and glycolysis inhibitor in pancreatic cancer therapyCao, Xianhua 08 March 2007 (has links)
No description available.
|
3 |
The world according to mast cells – the role of Kit in normal and neoplastic canine mast cellsLin, Tzu-Yin 20 September 2007 (has links)
No description available.
|
4 |
Targeting Ectopic Hsp90 in Breast CancerBarrott, Jared January 2014 (has links)
<p>On the surface heat shock protein 90 (Hsp90) is an unlikely drug target for the treatment of any disease, let alone cancer. Hsp90 is highly conserved and ubiquitously expressed in all cells. There are four major isoforms encoded by distinct genes and together they may constitute 1-3% of the cellular protein. Genetic deletion results in nonviable phenotypes in some organisms, and there are no recognized polymorphisms suggesting an association or causal relationship with any human disease. With respect to cancer, the proteins absence from some recent high profile articles underlines the perception that it is an unlikely bona fide target to treat this disease. Yet, to date, there are 17 distinct Hsp90 inhibitors in clinical trials for multiple indications in cancer. The protein has been championed for over 20 years by the National Cancer Institute as a cancer target since the discovery of the antitumor activity of geldanamycin. Rather than focus on the intracellular inhibition of Hsp90, we have shifted our aim to the differences of Hsp90 between cancer and normal tissue, namely its extracellular expression.</p><p>My graduate thesis work has focused on the characterization of a series of novel small molecule imaging agents (fluor-tethered Hsp90 inhibitors) that enable the specific detection of ectopically expressed Hsp90 on tumor cells. We believe that these molecules will have a large impact in the near future on the diagnosis and treatment of metastatic breast cancer as well as other cancers. This hypothesis is based on recent findings in the clinical literature that have linked upregulation of Hsp90 with poor outcomes in multiple subtypes of breast cancer. Additionally, several papers have also reported an association of the expression of extracellular Hsp90 and metastatic progression in several human cancers. Hsp90 is currently considered by some as a cutting edge cancer drug target. The Haystead lab synthesized a series of tethered Hsp90 inhibitors that were modified with fluorophores and other imaging moieties in such a way as to preserve the binding to Hsp90 and enable detection through non-invasive imaging techniques. In a series of cell-based, live animal and biochemical studies we demonstrated that these molecules are highly selective for Hsp90 and can be used to specifically recognize intact tumor cells expressing ectopic Hsp90. Furthermore, we also observed that once bound to ectopic Hsp90, our tethered-inhibitors are actively internalized and this process can be blocked with Hsp90 antibodies. These findings have two implications; first, Hsp90 is undergoing active cycling at the plasma membrane; second, the finding that once bound to surface Hsp90 our fluor-tethered inhibitors can be internalized despite their polar nature. These results suggest a new therapeutic strategy that will enable specific delivery of tumor killing agents (e.g. 131I or metabolic poisons) to metastatic cells. This is unique because the use of small molecule inhibitors and not antibody- or nanoparticle-based payload delivery strategies offers advantages in formulation, cost and reproducibility.</p><p> In addition to payload delivery possibilities, we also show the utility of the tethered-inhibitors diagnostically by demonstrating their use in the detection of tumors in mouse models of human breast cancer. As a result of our animal studies, we believe our molecules in their present form could be used to address a currently unmet need in the early diagnosis of aggressive breast cancer and discriminating this from more indolent forms. </p><p>Furthermore, the tethered Hsp90 inhibitors have been used to make ligand affinity chromatography resins that have facilitated the discovery of other unique Hsp90 expressions and functions associated with cancer. We have found a pool of Hsp90 that is misfolded as determined by affinity chromatography depletion and a leftward thermal stability shift in the population of Hsp90 that flows through the ligand affinity resins. Differential trypsin digest patterns detected by mass spectrometry reveal also that the native protein has sites that are more accessible to trypsinization. This could have further implications in treating and detecting differences between cancerous tissues and normal tissues by designing an antibody that recognizes the exposed portions of the misfolded Hsp90. Together this body of work illustrates that not only is Hsp90 different in total expression levels in cancers, but is ectopically expressed and misfolded so as to provide other opportunities for therapeutic intervention that improve the safety for more clinical applications.</p> / Dissertation
|
5 |
Creating new opportunities for cardiac transplantation after circulatory death (DCD) using a novel pharmacological agentKhalil, Khalil 12 1900 (has links)
Contexte : Au cours de la dernière décennie, le nombre de personnes en attente d’une
transplantation cardiaque a augmenté d’environ 25%, tandis que le nombre de greffes effectuées
chaque année est resté stable. Le taux de décès des patients en attente d’une greffe cardiaque
est d’environ 15-20%. Le don d’organe suite à un décès cardiocirculatoire (DDC) est une
alternative au don après décès neurologique (DDN) qui a permis d’augmenter le nombre
d’organes disponibles comme les poumons, les reins et les foies. Compte tenu de la survenue
d’une mort cardiovasculaire dans les protocoles DDC, le cœur est rarement greffé à cause des
dommages infligés durant la période d’ischémie chaude. Notre équipe a précédemment
démontré que l’utilisation du Celastrol, ainsi que notre analogue synthétique inhibiteur de la
HSP90 ont des effets cardioprotecteurs, quand administrés au moment de la reperfusion dans
des modèles in vitro de culture cellulaire et ex vivo dans des cœurs de rats montés sur le système
de perfusion Langendorff. L’objectif est d’évaluer les mécanismes cardioprotecteurs rapides
d’une nouvelle formulation de l’inhibiteur HSP90, et de comprendre l’efficacité de ce nouveau
composé synthétique sur deux lignées de cellules : les cardiomyoblastes H9c2 issus de rats et les
cardiomyocytes dérivés de cellules souches pluripotentes humaines (iPSC-CMs).
Méthodes/Résultats : Les cellules H9c2 et iPSC-CMs ont été cultivées. La signalisation cellulaire a
été analysée par western blot pour évaluer le niveau d’activation de ces différentes voies. Suite à
l’optimisation des conditions pour les cellules iPSC-CMs, les deux lignées cellulaires ont été mises
en condition ischémique (sans glucose, 95% N2, 5% CO2) durant la nuit, puis reperfusées, en
conditions normales, avec différentes concentrations de l’inhibiteur HSP90. La viabilité cellulaire
ainsi que l’ouverture des pores mitochondriaux (mPTP) ont été évaluées à l’aide de kits
d’analyses, la production de radicaux libres d’oxygène à l’aide de kits de fluorescence et
l’expression des ARN messagers de gènes antioxydants à l’aide de la réaction en chaîne par
polymérase (PCR).
Les résultats ont montré une augmentation de l’activation des voies cytoprotectrices quand les
deux lignées cellulaires étaient traitées à la concentration 10-6M du composé sans stress
4
ischémique : augmentation de HO-1 and HSP-70 dans les 30 premières minutes et AKT et ERK
après 1 heure de traitement et 3 heures de récupération. Contrairement à nos attentes, le
traitement au moment de la reperfusion à la concentration 10-6M a montré une diminution de la
viabilité des cellules, alors que la concentration 10-7M l’a augmenté. À une concentration de 10-
7M, il y a eu diminution de la production de radicaux libres comparativement au groupe témoin.
Comme attendu, cette concentration a aussi démontré une diminution de l’ouverture des mPTP.
Tous ces résultats ont été observés, autant dans les cellules humaines que celles de rats. Une
évaluation préliminaire de l’expression des gènes antioxydants dans les cellules H9c2 a seulement
montré une augmentation de l’expression des gènes CAT et HO-1.
Conclusion : Notre groupe de recherche a précédemment démontré l’efficacité des composés
issus du Celastrol sur la réduction des dommages myocardiques dus à la reperfusion dans les
modèles d’ischémie, incluant l’infarctus du myocarde et la donation après décès
cardiocirculatoire. Ces expériences ont montré les effets bénéfiques du nouveau composé
synthétique sur l’expression des gènes antioxydants, et sur l’activation d’une série de voies
cytoprotectrices permettant la stabilisation de la membrane mitochondriale, réduisant aussi la
production de radicaux libres, et améliorant ultimement la survie cellulaire. Des études
supplémentaires sont en cours afin d’améliorer la compréhension des modes d’action, des
mécanismes et des dosages optimaux du médicament, ce qui nous permettra de commencer les
essais sur animaux dans le but d’introduire cette molécule en clinique dans le contexte de don
d’organes. / Background: During the last decade, the number of people waiting for a cardiac transplantation
has increased by about 25%, while the number of yearly transplant surgeries performed has
remained steady. The death rate of patients awaiting heart transplant is about 15-20%. Organ
donation after circulatory death (DCD) is an alternative to donation after neurological death
(DND) that has allowed to increase the number of available organs like lungs, livers, and kidneys.
However, because of the cardiac death in DCD protocols, the heart is rarely used because of the
injuries suffered by the warm ischemia period. Our group has previously shown that Celastrol,
along with a synthetic HSP90 inhibitor analog, have cardioprotective effects when given as
postconditioning agents at the moment of reperfusion in an in vitro model on cellular cultures
and an ex vivo model on rat hearts mounted on a Langendorff perfusion system. The objective is
to evaluate the rapid cardioprotective mechanisms of a novel formulation of the HSP90 inhibitor
compound, and to understand the efficacy of this new synthetic compound on two cell lines: rat
H9c2 cardiomyoblasts and human induced pluripotent stem cell-derived cardiomyocytes (iPSCCMs).
Methods/Results: H9c2 rat cardiomyoblasts and human iPSC-CMs were cultured. Cell signaling
was analyzed by western blot to evaluate pathway activations. Both cell lines were put in ischemic
conditions (no glucose, 95% N2, 5% CO2) overnight, then reperfused (normal conditions) with
different concentrations of HSP90i after optimizing the human iPSC-CMs’ stress experiment. Cell
viability and mitochondrial permeability transition pore (mPTP) opening were evaluated using
assays, oxygen-free radical production by fluorescence assay and antioxidant gene messenger
RNA expression via polymerase chain reaction (PCR).
Results showed an increase in cytoprotective pathway activation when both cell lines were
treated with 10-6M of the compound without any stress: HO-1 and HSP-70 in the first 30 minutes
while AKT and ERK after 1 hour of treatment and 3 hours of recuperation. Interestingly, treatment
with the compound at 10-6M at the moment of reperfusion showed decreased viability of the cells
while 10-7M improved it. Free radical production was also decreased at a concentration of 10-7M
6
when compared to the baseline, and as expected, the compound also decreased mPTP opening.
These results were seen in both human and rat cell lines. Preliminary evaluation of antioxidant
gene expression in H9c2 cells only showed an increase in the expression of the cytoprotective
CAT and HO-1 genes.
Conclusion: Our research group has previously demonstrated the efficacy of Celastrol compounds
in reducing reperfusion damage in myocardial ischemia models, including myocardial infarction
and donation after circulatory death. These experiments have shown that the beneficial effects
of this new synthetic compound include the expression of antioxidant genes and the launching of
a series of cytoprotective pathways that stabilize the mitochondrial membrane, reduce free
radical production, and improve cell survival. Additional studies to fully understand the mode of
action, the mechanisms and the optimal dosages are underway to allow us to move to animal
trials in order to ultimately introduce the molecule in the clinical field in the context of organ
donation.
|
Page generated in 0.0696 seconds