• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizing text-independent speaker recognition using an LSTM neural network

Larsson, Joel January 2014 (has links)
In this paper a novel speaker recognition system is introduced. Automated speaker recognition has become increasingly popular to aid in crime investigations and authorization processes with the advances in computer science. Here, a recurrent neural network approach is used to learn to identify ten speakers within a set of 21 audio books. Audio signals are processed via spectral analysis into Mel Frequency Cepstral Coefficients that serve as speaker specific features, which are input to the neural network. The Long Short-Term Memory algorithm is examined for the first time within this area, with interesting results. Experiments are made as to find the optimum network model for the problem. These show that the network learns to identify the speakers well, text-independently, when the recording situation is the same. However the system has problems to recognize speakers from different recordings, which is probably due to noise sensitivity of the speech processing algorithm in use.

Page generated in 0.018 seconds