• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioactivation of the Proximal Food Mutagen 2-Hydroxyamino-1-Methyl-6- Phenylimidazo[4,5-B]Pyridine (N-OH-PhIP) to DNA-Binding Species by Human Mammary Gland Enzymes

Dubuisson, Jeffrey G., Gaubatz, James W. 01 September 1998 (has links)
We have investigated phase II activation of the food-derived mutagen 2- hydroxyamino-1-methyl-6-phenyl[4,5-b]pyridine (N-OH-PhIP) by cytosolic acetyltransferase, sulfotransferase, and tRNA synthetase/kinase enzymes from human breast tissue. Cytosol from homogenates of mammary gland tissue obtained from breast-reduction surgery or mastectomy was incubated with and without enzyme-specific cofactors, and mutagen binding to calf thymus DNA was quantified by 32P-postlabeling. In addition, microsomal fractions of mammary epithelial cells from some individuals were examined for prostaglandin H synthetase activation of N-OH-PhIP. Our results show that all four enzymes can participate in activating N-OH-PhIP, thus inducing PhIP-DNA adduct formation in human mammary cells. However, not all individuals exhibited all these activities; instead each individual showed a combination of one or more activation pathways. The present findings demonstrate that the human mammary gland has the capacity to metabolically activate a dietary mutagen by several enzyme systems, including acetyltransferase, sulfotransferase, tRNA synthetase/kinase, and prostaglandin hydroperoxidase catalysis.

Page generated in 0.0719 seconds