• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, fabrication, and testing of a hybrid vacuum-electric actuated robotic arm

Peng, Zeyuan January 2024 (has links)
his thesis presents the design, fabrication, and testing of a robotic arm that is inherently safe, lightweight and affordable. The arm’s three joints are driven by novel hybrid vacuum-electric actuators that each combine origami-inspired soft pneumatic actuators (OSPAs) with a DC motor. The arm is a type of collaborative robot, or cobot, that is suitable for low payload, low speed applications. The OSPA was redesigned in the first stage of the research. In particular, the new endcaps are 59% shorter than the previous design. This made the actuators more compact and increased their stroke-to-length ratio. Next, the OSPA fabrication process was significantly changed. The heating of the heat shrink tubing was changed from immersion in boiling water to heating with a heat gun, and a motorized stand with several assisting parts was developed. These changes improved the consistency of the fabrication, reduced the skills required, and improved the safety. The joints of the arm and its structural components were designed next. The rotation of each joint is achieved by connecting multiple OSPAs to custom-made pulleys using cables and connecting a DC motor in parallel using a timing belt. Joint 2, the shoulder joint, had to produce the largest torque. This was accomplished by applying optimization methods to design a variable-radius pulley. The prototype arm utilized laser-cut acrylic and 3D printed components to keep its cost and weight low. Finally, after a simple pressure control system was developed, the prototype arm’s performance was extensively tested. The joints’ ranges of motion, velocities, accelerations, and blocked torques are tested at multiple pressures and motor currents, and the results discussed. The thesis concludes with a summary of the research’s achievements and limitations, and recommendations for future improvements to the robotic arm’s design. / Thesis / Master of Applied Science (MASc) / This thesis presents the design, fabrication, and testing of a robotic arm that is inherently safe, lightweight and affordable. The arm’s three joints are driven by novel actuators that each combine soft pneumatic actuators (powered by vacuum pressure) with a DC motor. The arm is suitable for low payload, low speed applications. First, the pneumatic actuators were redesigned to make them more compact. Next, their fabrication process was changed to improve the consistency of the results, reduce the skills required, and improve the safety. The joints of the arm and its structural components were then designed. To produce the torque required for the shoulder joint, optimization methods were used to create a variable-radius pulley. The prototype arm utilized laser-cut acrylic and 3D-printed components to keep its cost and weight low. Finally, after a simple pressure control system was developed, the prototype arm’s performance was extensively tested.
2

High Precision and Safe Hybrid Pneumatic-Electric Actuated Manipulators

Rouzbeh, Behrad January 2021 (has links)
Robot arms require actuators that are powerful, precise and safe. The safety concern is amplified when these robots work closely with people in collaborative applications. This thesis investigates the design and implementation of hybrid pneumatic-electric actuators (HPEA) for use in robot arms, particularly those intended for collaborative applications. The initial focus was on improving the control of an existing single HPEA-driven rotary joint. The torque is produced by four pneumatic cylinders connected in parallel with a small DC motor. The DC motor is directly connected to the output shaft. A cascaded control system is designed that consists of an outer position control loop and an inner pressure control loop. The pressure controller is based on a novel inverse valve model. High precision position tracking control is achieved due to the combination of the model-based pressure controller, model-based position controller, adaptive friction compensator and offline payload estimator. Experiments are performed with the actuator prototype rotating a link and payload with a rotational inertia equivalent to a linear actuator moving a 573 kg mass. Averaged over five tests, a root-mean-square error of 0.024° and a steady-state error (SSE) of 0.0045° are achieved for a fast multi-cycloidal trajectory. This SSE is almost ten times smaller than the best value reported for previous HPEAs. An offline payload estimation algorithm is used to improve the control system’s robustness. The superior safety of the HPEA is shown by modeling and simulating a constrained robot-head impact, and comparing the result with equivalent electric and pneumatic actuators. This research produced two journal papers. Since HPEAs are redundant actuators that combine the large force, low bandwidth characteristics of pneumatic actuators with the large bandwidth, small force characteristics of electric actuators, the effect of using optimization-based input allocation for HPEAs was studied. The goal was to improve the HPEA’s performance by distributing the required input (force or torque) between the redundant actuators in accordance with each actuator’s advantages and limitations. Three novel model-predictive control (MPC) approaches are designed to solve the position tracking and input allocation problems using convex optimization. The approaches are simulated on a HPEA-driven system and compared to a conventional linear controller without active input allocation. The first MPC approach uses a model that includes the dynamics of the payload and pneumatics; and performs the motion control using a single loop. The latter methods simplify the MPC law by separating the position and pressure controllers. Although the linear controller is the most computationally efficient, it is inferior to the MPC-based controllers in position tracking and force allocation performance. The third MPC-based controller design demonstrated the best position tracking with root mean square errors of 46%, 20%, and 55% smaller than the other three approaches. It also demonstrated sufficient speed for real-time operation. This research produced one journal paper. The research continued with the design and implementation of a two degree-of-freedom HPEA-driven arm. A HPEA-driven “elbow” joint is designed and added to the existing “shoulder” joint. The force from a single pneumatic cylinder is converted into torque using a 4-bar linkage. To eliminate backlash and keep the weight of the arm low, a 2nd smaller DC motor is directly connected to the joint. The kinematic and kinetic models of the new arm, as well as the geometry of the new elbow joint are studied. The resulting joint design is implemented, tested and controlled. This joint could achieve a SSE of 0.0045° in spite of its nonlinear joint geometry. The arm is experimentally tested for simultaneous tracking control of the two joints, and for end-effector position tracking in Cartesian space. The end-effector is able to follow a circular trajectory in pneumatic mode with position errors below 0.005 m. / Thesis / Doctor of Philosophy (PhD) / Robots that work with, or near, humans require greater safety considerations than other robots. A significant concern is collisions between the robot and humans that may happen when sensors or software fails. An actuator for robots that combines the inherent safety of pneumatic actuators with the accuracy of electric actuators, termed a “hybrid pneumatic electric actuator” (HPEA), is investigated. The design, instrumentation, modelling, and control of HPEAs are studied theoretically and experimentally. The proposed actuator could achieve high position control accuracy in a variety of experiments, with steady state error of less than 0.0045 degrees. Simulated impacts with a human head also showed that a HPEA-driven robot arm can achieve a 52% lower impact force, compared to an arm driven by conventional electric actuators. The HPEA design and control experiments are performed on a single HPEA-driven joint and extended to an arm consisting of two HPEA-driven revolute joints.

Page generated in 0.14 seconds