• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effect of Planting Strategies, Imazethapyr Rates, and Application Timings on CLEARFIELD® Hybrid Rice Injury

Turner, Aaron Lyles 2011 December 1900 (has links)
CLEARFIELD® rice, which is a non-genetically modified crop that is tolerant to herbicides in the imidazolinone family has helped producers combat red rice problems in rice since itʼs introduction in 2002. Recently, breeders introduced hybrid CLEARFIELD® lines hoping to maintain the desired herbicide-resistant traits while having the added benefits of a hybrid. Soon after the hybrid line was released, farmers noticed herbicide injury to these new varieties while following the label recommendations. Research was performed to test the hybrids on the effect of planting date, planting density, and imazethapyr application rate on visual plant injury at Beaumont and Eagle Lake, TX in 2008 and 2009. A secondary experiment was designed to test the effect of imazethapyr application timing and rate on plant height, fresh weight, and dry weight in Eagle Lake and Beaumont, TX in 2010 with a greenhouse experiment in College Station, TX in 2009. The 2008 and 2009 field trials were planted at three different densities, (28, 39, and 50 kg ha-1) with two different planting dates representing the months of March and April. Herbicide treatments consisted of four 1- to 2-leaf rates of imazethapyr that included 0.035, 0.07, 0.105, and 0.14 kg ha-1, followed by two 4- to 6-leaf rates of imazethapyr of 0.07 and 0.105 kg ha-1. Rice showed injury symptoms two weeks after the second application of imazethapyr but was able to recover soon after nitrogen fertilizer application and flood establishment. Grain yield was not significantly different in plots that received a full labeled rate of imazethapyr or more for either location in either year. The 2009 greenhouse study and 2010 field studies included treatments that had one early post at 1- to 2-leaf and one of two different late post applications that included either a 3- to 4-leaf or a 5- to 6-leaf treatment. The three rates included in the early 1- to 2-leaf application were 0, 0.035 and 0.07 kg ai ha-1. The four rates included in the late application were 0, 0.07, 0.105, and 0.14 kg ai ha-1. Plants treated with the labeled rate, 0.07 to 0.105 kg ai ha-1 at each 1- to 2-leaf and 3- to 6-leaf stage, showed no significant differences in yield, or quality; however, significant differences were recorded in height. According to this data, hybrid rice seems to be tolerant to imazethapyr applications and timings.
2

Proteomic study on the starch synthesis and regulation in developing hybrid rice seeds.

January 2006 (has links)
Long Xiaohang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (leaves 132-155). / Abstracts in English and Chinese. / Thesis/Assessment Committee --- p.I / Statement from Author --- p.II / Acknowledgements --- p.III / Abstract --- p.V / 摘要 --- p.VII / Table of Contents --- p.IX / List of Tables --- p.XV / List of Figures --- p.XVI / List of Abbreviations --- p.XVIII / Chapter Chapter 1 --- General Introduction and Literature Review --- p.1 / Chapter 1.1 --- General introduction --- p.1 / Chapter 1.2 --- Literature review --- p.5 / Chapter 1.2.1 --- Rice --- p.5 / Chapter 1.2.1.1 --- Classification of rice --- p.5 / Chapter 1.2.1.2 --- Rice grain quality --- p.5 / Chapter 1.2.2 --- Overview of current information on the starch biosynthesis and regulation during seed development --- p.7 / Chapter 1.2.2.1 --- Starch property --- p.7 / Chapter 1.2.2.1.1 --- Structure of rice starch granules --- p.7 / Chapter 1.2.2.1.2 --- Properties of rice starch --- p.7 / Chapter 1.2.2.2 --- Starch synthesis related proteins --- p.8 / Chapter 1.2.2.2.1 --- The formation of ADP-glucose through AGPase --- p.10 / Chapter 1.2.2.2.2 --- The synthesis of starch by starch synthases --- p.10 / Chapter 1.2.2.2.2.1 --- Amylose biosynthesis --- p.10 / Chapter 1.2.2.2.2.2 --- Amylopectin biosynthesis --- p.11 / Chapter 1.2.2.2.3 --- Branching of the glucan chain by starch branching enzymes --- p.12 / Chapter 1.2.2.2.4 --- The role of debranching enzymes in polymer synthesis --- p.13 / Chapter 1.2.2.2.5 --- Starch degradation in plastids --- p.13 / Chapter 1.2.2.2.6 --- Other enzymes involved in starch synthesis pathway --- p.13 / Chapter 1.2.2.3 --- Starch biosynthesis regulation --- p.14 / Chapter 1.2.2.3.1 --- Developmental regulation --- p.14 / Chapter 1.2.2.3.2. --- Diurnal regulation --- p.15 / Chapter 1.2.2.3.3 --- 3-PGA/Pi regulation --- p.16 / Chapter 1.2.2.3.4. --- Sugar signaling --- p.17 / Chapter 1.2.2.3.5. --- Hormonal signaling --- p.18 / Chapter 1.2.2.3.6 --- Post translational modification regulation --- p.18 / Chapter 1.2.2.3.6.1 --- Post translational redox modulation --- p.18 / Chapter 1.2.2.3.6.2 --- Protein phosphorylation --- p.19 / Chapter 1.2.2.4 --- Rice grain quality improvement by genetic engineering --- p.20 / Chapter 1.2.2.4.1 --- Cooking and eating quality improvement --- p.20 / Chapter 1.2.2.4.1.1 --- Manipulation of starch content --- p.20 / Chapter 1.2.2.4.1.2 --- Manipulation of amylose/ amylopectin ratio --- p.20 / Chapter 1.2.2.4.2 --- Other targets for manipulating starch quality and quantity --- p.21 / Chapter 1.2.3 --- Proteomics --- p.23 / Chapter 1.2.3.1 --- General introduction --- p.23 / Chapter 1.2.3.2 --- Current technologies of proteomics --- p.25 / Chapter 1.2.3.2.1 --- Protein separation by 2D or non-2D method --- p.25 / Chapter 1.2.3.2.2 --- Protein visualization --- p.26 / Chapter 1.2.3.2.3 --- Computer-assisted image analysis --- p.27 / Chapter 1.2.3.2.4 --- Protein identification by mass spectrometry --- p.28 / Chapter 1.2.3.2.5 --- Database search --- p.28 / Chapter 1.2.3.2.5.1 --- Database searching software --- p.29 / Chapter 1.2.3.2.5.2 --- Protein sequence database --- p.29 / Chapter 1.2.3.2.5.3 --- Evaluating database hits --- p.30 / Chapter 1.2.3.2.6 --- Bioinformatics involved in proteomics --- p.31 / Chapter 1.2.3.2.7 --- Post translational modification --- p.32 / Chapter 1.2.3.2.7.1 --- Glycosylation --- p.32 / Chapter 1.2.3.2.7.1.1 --- N-linked glycosylation --- p.33 / Chapter 1.2.3.2.7.1.2 --- O-linked glycosylation --- p.33 / Chapter 1.2.3.2.7.2 --- Phosphorylation --- p.33 / Chapter 1.2.3.2.7.3 --- Strategies for studying PTMs --- p.34 / Chapter 1.2.3.2.8 --- Other aspects of proteomics --- p.36 / Chapter 1.2.3.2.8.1 --- 2D DIGE --- p.36 / Chapter 1.2.3.2.8.2 --- LC/LC-MS/MS --- p.36 / Chapter 1.2.3.2.8.2.1 --- MudPIT --- p.36 / Chapter 1.2.3.2.8.2.2 --- ICAT --- p.37 / Chapter 1.2.3.3 --- Plant proteomics --- p.37 / Chapter 1.2.3.3.1 --- Proteome analysis of plant tissues and organs --- p.38 / Chapter 1.2.3.3.2 --- Plant organelle proteomics --- p.39 / Chapter 1.2.3.3.3 --- Post translational modifications in plant --- p.41 / Chapter 1.2.3.4 --- Recent progress in rice proteomics --- p.42 / Chapter 1.2.3.4.1 --- General introduction of rice proteomics --- p.42 / Chapter 1.2.3.4.2 --- Rice proteome database construction --- p.43 / Chapter 1.2.3.4.3 --- Comparative proteomics --- p.43 / Chapter 1.2.3.4.4 --- Post translational modification study of rice proteome --- p.44 / Chapter Chapter 2 --- Materials and methods --- p.45 / Chapter 2.1 --- Materials --- p.45 / Chapter 2.1.1 --- Plant materials --- p.45 / Chapter 2.1.2 --- Chemical reagents and commercial kits --- p.46 / Chapter 2.1.3 --- Instruments --- p.46 / Chapter 2.1.4 --- Software --- p.46 / Chapter 2.2 --- Methods --- p.47 / Chapter 2.2.1 --- Fractionation of amyloplast and amyloplast membrane proteins --- p.47 / Chapter 2.2.2 --- Marker enzyme assays --- p.47 / Chapter 2.2.3 --- 2D gel electrophoresis --- p.48 / Chapter 2.2.4 --- Silver staining of 2D gel --- p.49 / Chapter 2.2.5 --- In-gel digestion of protein spots --- p.49 / Chapter 2.2.6 --- Desalination of the digested sample with ZipTip --- p.49 / Chapter 2.2.7 --- Protein identification by mass spectrometry and database searching --- p.50 / Chapter 2.2.8 --- Image and data analysis --- p.50 / Chapter 2.2.9 --- Extraction of starch granule associated proteins --- p.51 / Chapter 2.2.10 --- Western blot analysis --- p.51 / Chapter 2.2.11 --- Sample preparation for N terminal sequencing --- p.51 / Chapter 2.2.12 --- Phosphorylation and glycosylation assays --- p.52 / Chapter Chapter 3 --- Results --- p.53 / Chapter 3.1 --- Protein identification by ID and 2D PAGE --- p.53 / Chapter 3.1.1 --- Isolation and purification of amyloplasts from rice seeds --- p.53 / Chapter 3.1.2 --- Identification of amyloplast and amyloplast membrane proteins by MS/MS --- p.54 / Chapter 3.1.2.1 --- Sample preparation --- p.54 / Chapter 3.1.2.2 --- 2D and ID gel electrophoresis --- p.55 / Chapter 3.1.2.3 --- Protein identification by MS and MS/MS --- p.56 / Chapter 3.1.3 --- Functional classification of identified proteins --- p.69 / Chapter 3.1.3.1 --- Metabolism proteins --- p.71 / Chapter 3.1.3.2 --- Non starch synthesis metabolism proteins --- p.73 / Chapter 3.1.3.3 --- Protein destination --- p.73 / Chapter 3.1.3.4 --- Proteins with other functions --- p.74 / Chapter 3.1.4 --- Cross-correlation of experimental and calculated Mw of proteins --- p.74 / Chapter 3.1.5 --- Granule bound starch synthase (GBSS) --- p.75 / Chapter 3.1.5 --- N-terminal sequencing --- p.77 / Chapter 3.2 --- Protein profiling --- p.80 / Chapter 3.2.1 --- Seed collection and stages chosen --- p.80 / Chapter 3.2.2 --- The proteomic profiles of rice amyloplasts at different developing stages --- p.81 / Chapter 3.2.4 --- Comparing the proteome of three rice lines --- p.85 / Chapter 3.2.4.1 --- Spot number analysis --- p.85 / Chapter 3.2.4.2 --- Functional distribution analysis --- p.86 / Chapter 3.2.4.3 --- Protein amount analysis --- p.87 / Chapter 3.2.5 --- Comparison of expression pattern: cluster analysis (SOM) --- p.88 / Chapter 3.2.5.1 --- Cluster analysis of rice amyloplast proteome --- p.88 / Chapter 3.2.5.2 --- Three major categories of rice amyloplast proteome expression patterns --- p.91 / Chapter 3.2.6 --- Scatter plots analysis --- p.94 / Chapter 3.2.7 --- Comparison of changes in proteins related to starch synthesis --- p.96 / Chapter 3.2.7.1 --- GBSS --- p.96 / Chapter 3.2.7.2 --- AGPase --- p.98 / Chapter 3.2.7.3 --- SSS --- p.98 / Chapter 3.2.7.4 --- SBE --- p.98 / Chapter 3.2.7.5 --- SP --- p.98 / Chapter 3.3 --- Study on protein post translational modifications --- p.102 / Chapter 3.3.1 --- Post translational modifications that potentially regulate starch synthesis --- p.102 / Chapter 3.3.2 --- Post translational modifications at different developing stages --- p.104 / Chapter 3.3.2.1 --- Profiling of post translational modifications of rice amyloplast proteome --- p.104 / Chapter 3.3.2.2 --- Starch synthesis related proteins --- p.106 / Chapter 3.3.2.2.1 --- GBSS --- p.106 / Chapter 3.3.2.2.2 --- SSS --- p.108 / Chapter Chapter 4 --- Discussion --- p.111 / Chapter 4.1 --- Methodology --- p.111 / Chapter 4.1.1 --- Amyloplast isolation --- p.111 / Chapter 4.1.2 --- Protein extraction from amyloplasts --- p.111 / Chapter 4.1.3 --- Protein identification by PMF and MS/MS --- p.112 / Chapter 4.1.4 --- Methods used to study protein expression patterns --- p.113 / Chapter 4.1.5 --- New methods introduced to study post translational modifications --- p.114 / Chapter 4.2 --- Characteristics of rice amyloplast proteins --- p.115 / Chapter 4.2.1 --- Amyloplast proteins associated with starch granules --- p.116 / Chapter 4.2.2 --- Most proteins in amyloplast proteome contain the transit peptide --- p.116 / Chapter 4.2.3 --- Multiple isoforms of starch synthesis related proteins --- p.117 / Chapter 4.2.3.1 --- Multiple spots of GBSS --- p.118 / Chapter 4.2.4 --- Expression patterns of amyloplast proteome --- p.120 / Chapter 4.2.5 --- Post translational modifications potentially regulate starch synthesis --- p.122 / Chapter 4.3 --- Other characteristic aspects of amyloplast proteome --- p.123 / Chapter 4.3.1 --- Comparison between the rice and wheat amyloplast proteomes --- p.123 / Chapter 4.3.2 --- Proteomic comparisons among the three rice lines --- p.124 / Chapter 4.3.3 --- Comparison of starch synthesis enzymes at protein and transcript levels --- p.124 / Chapter 4.3.4 --- Comparison of the starch synthesis related proteins among the three rice lines --- p.126 / Chapter 4.4 --- Limitations of proteomic approach in directly answering the question on how to improve eating and cooling quality --- p.126 / Chapter Chapter 5 --- Conclusion --- p.128 / Chapter Chapter 6 --- Future perspectives --- p.130 / References --- p.132
3

Arranjos de semeadura e desempenho de híbridos de arroz

Goulart, Eduardo da Silveira 05 December 2012 (has links)
Made available in DSpace on 2014-08-20T13:44:30Z (GMT). No. of bitstreams: 1 dissertacao_eduardo_da_silveira_goulart.pdf: 299684 bytes, checksum: 7ca742a050e5fef40fcdef705495dd58 (MD5) Previous issue date: 2012-12-05 / The practices and techniques used in irrigated rice to obtain better performances include the optimal density and the best arrangement of plants in the area. This study aims to evaluate the behavior and plasticity in the yield and grain quality of three rice hybrids with different sowing arrangements in the density and row spacing. The experimental field was conducted in rice season 2010/2011 in Capão do Leão, Viamão and Uruguaiana at Rio Grande do Sul state. Three different sowing arrangements, involving row spacing with 17 cm, 34 cm and 17cm intercalated with 34 cm which corresponded respectively to densities of 40 kg.ha-1, 20 kg.ha-1 and 32 kg.ha-1. The experimental design used was randomized blocks with sub divided plots with three replications considering each location as a replication. Were evaluated the yield and grain quality. The results show that the grain yield and grain quality components of hybrid rice were not affected by sowing arrangement. The hybrids behavior demonstrates the plasticity to compensate lower densities and different distance between planting rows. This allow recommendations of seeding rates and row spacing for these hybrids reducing the amount of seed to be sown per area compared with what is currently recommended. It means cost reduction and can make the use of this technology more attractive and widely used in commercial rice fields. / Entre as práticas empregadas no cultivo do arroz irrigado para se obter melhores rendimentos, a escolha da densidade ideal e do melhor arranjo de plantas na área são muito importantes. O presente trabalho objetiva avaliar o comportamento e a plasticidade de três híbridos de arroz com relação à produtividade e qualidade industrial, quando os arranjos de semeadura envolvem variações na densidade e espaçamento entre linhas. O trabalho foi conduzido na safra 2010/2011 nos municípios do Capão do Leão, Viamão e Uruguaiana. Foram testados três arranjos de semeadura, com espaçamentos entre linhas de 0,17m, 0,34m e linhas intercaladas com 0,17 e 0,34m, que corresponderam respectivamente às densidades de 40kg.ha-1, 20kgha-1 e 32kg.ha-1. O delineamento experimental foi de blocos ao acaso, com parcelas subdivididas, com três repetições, considerando o local como repetição. Avaliou-se o rendimento e a qualidade industrial dos grãos. Os resultados mostram que a produtividade e os componentes de qualidade industrial dos genótipos não foram afetados pelos diferentes arranjos de semeadura. Este comportamento mostra a plasticidade dos híbridos em compensar as densidades menores e as diferentes distribuições das linhas de semeadura. Isso torna possível a flexibilização das recomendações de densidades de semeadura e espaçamentos entre linhas para estes híbridos, permitindo a redução da quantidade de sementes a ser semeada por área, em relação ao que está sendo atualmente recomendado, dessa forma reduzir os custos de produção e tornar o uso desta tecnologia mais atraente e largamente utilizada nas lavouras comerciais de arroz irrigado.

Page generated in 0.0661 seconds