Spelling suggestions: "subject:"hyde""
1 |
Drosophila E3 ubiquitin ligase Hyperplastic Discs interacts with Shaggy and regulates morphogen signalling in the developing eyeMoncrieff, Sophie January 2015 (has links)
The expression of the Drosophila melanogaster morphogen Hedgehog (Hh) plays a key role in co-ordinating proliferation and differentiation during animal development. Tight spatial and temporal regulation of Hh expression is essential for its correct function in these essential processes. Both mis-expression of its mammalian orthologue Sonic Hedgehog (Shh) and aberrant stimulation of the associated signalling pathway occur in a wide range of human tumours. Although there is extensive knowledge of the signal transduction pathway that is activated in a Hh-stimulated cell, very little is known about pathways governing the expression of the morphogen itself. The Drosophila tumour suppressor protein Hyperplastic Discs (Hyd), an E3 ubiquitin ligase, negatively regulates hedgehog (hh) expression and Hh pathway activity by independent mechanisms in the developing Drosophila eye. Genetically generated hyd mutant clones in the eye mis-express hh and the transcriptional activator of Hh target genes, Cubitus interruptus (Ci), and cause overgrowth of the surrounding wildtype tissue. However, the underlying molecular mechanism(s) by which Hyd regulates these morphogen regulatory pathways is not known. Hyd may be involved in ubiquitylating target proteins in these pathways, which could have degradative or non-degradative outcomes. In order to elucidate Hyd’s molecular role in potential morphogen regulatory pathways, I applied a proteomics-based approach to identify novel Hyd binding partners and ubiquitylated substrates. Tandem affinity purification in combination with mass spectrometry was used to purify and identify Hyd and its complexed binding partners from Drosophila cells. Binding and ubiquitylation assays were subsequently used to verify and characterize the interactions. In addition, a biased, literature-guided approach was applied to identify likely Hyd binding partners based on their involvement in morphogen signalling and conservation across species. Finally, to assess the functional consequences of a newly identified interaction, I used a Drosophila in vivo model to determine whether the novel binding partner was capable of modifying the hyd mutant phenotype. For this purpose, the Mosaic Analysis with a Repressible Cell Marker (MARCM) technique was used to generate hyd mutant clones in the developing larval eye, which were expressing transgenes resulting in either the over-expression or RNAi-mediated knockdown of the gene of interest. My results indicate that Hyd is involved in regulating both Hh and Wg morphogen signalling in the Drosophila eye, and that the molecular mechanism of action may, at least in part, involve the protein kinase Shaggy (Sgg). Hyd interacts with the Hh and Wg transcriptional activator proteins Ci and Armadillo, respectively, as well as the Sgg kinase. Sgg is a negative regulator of both the Hh and Wg pathways, and acts to direct the proteolytic processing or degradation of the transcriptional effectors of these morphogen pathways. Sgg and its mammalian orthologue GSK3β were ubiquitylated in vitro, and GSK3β ubiquitylation was negatively regulated by the mammalian homologue of Hyd, EDD. Knockdown of sgg in eye disc cells mutant for hyd resulted in a dramatic rescue of the overgrowth phenotype. Loss of hyd in clones located in the anterior region of the eye disc resulted in low levels of the full-length Hh transcriptional activator protein Ci. This effect was reversed completely as a result of sgg knockdown. Furthermore, loss of hyd in eye disc clones resulted in elevated Hh and Wg morphogen expression. Mis-expression of hh in hyd mutant clones was significantly reduced upon over-expression of a constitutively active Sgg kinase. Hence sgg appears to genetically act downstream of hyd to regulate hh gene expression and Ci expression. In summary my results identify Sgg as a novel regulator of hh gene expression, whose activity may be regulated by ubiquitylation, and which may be acting downstream of Hyd in a ubiquitin-regulated manner to control both hh gene expression and Hh pathway activity in the developing Drosophila eye. Hyd may also regulate Hh pathway activity by directly interacting with Ci and affecting its activity. The results also indicate that Hyd may be a master regulator of both Hh and Wg morphogen signalling during Drosophila development.
|
2 |
Catalytic Hydrogenation and Hydrodesulfurization of Model CompoundsZhao, Haiyan 06 May 2009 (has links)
This dissertation describes two related studies on hydrogenation and hydrodesulfurization of heterocyclic S-containing compounds.
Alkyl substituted thiophenes are promising candidates for hydrogen carriers as the dehydrogenation reactions are known to occur under mild conditions. Four types of catalysts including supported noble metals, bimetallic noble metals, transition metal phosphides and transition metal sulfides have been investigated for 2-methylthiophene (2MT) hydrogenation and ring opening. The major products were tetrahydro-2-methylthiophene (TH2MT), pentenes and pentane, with very little C5-thiols observed. The selectivity towards the desired product TH2MT follows the order: noble metals > bimetallics > phosphides > sulfides. The best hydrogenation catalyst was 2% Pt/Al2O3 which exhibited relatively high reactivity and selectivity towards TH2MT at moderate temperatures. Temperature-programmed desorption (TPD) of hydrogen indicated that the H2 desorption amount was inversely related to the rate of TH2MT formation. Temperature programmed reaction (TPR) experiments revealed that pentanethiol became the major product, especially with HDS catalysts like CoMoS/Al2O3 and WP/SiO2, which indicates that poisoned or modified conventional HDS catalysts would be good candidates for further 2MT hydrogenation studies.
The role of tetrahedral Ni(1) sites and square pyramidal Ni(2) sites in Ni2P hydrotreating catalysts was studied by substitution of Ni with Fe. The Fe component was deemed as a good probe because Ni2P and Fe2P adopt the same hexagonal crystal structure, yet Fe2P is completely inactive for hydrodesulfurization (HDS). For this purpose a series of NiFeP/SiO2 catalysts were prepared with different Ni:Fe molar ratios (1:0, 3:1, 1:1, 1:3, and 0:1) and investigated in the HDS of 4,6-dimethyldibenzothiophene at 300 and 340 oC. The uniformity of the NiFe series was demonstrated by x-ray diffraction analysis and by Fourier transform infrared (FTIR) spectroscopy of adsorbed CO. The position of substitution of Fe was determined by extended X-ray absorption fine structure (EXAFS) analysis. It was found that at 300 oC the HDS activity of the catalysts decreased with increasing Fe content and that this could be explained by the substitution of Fe at the more active Ni(2) sites. As temperature was raised to 340 oC, the activity of the Fe-containing samples increased, although not to the level of Ni2P, and this could be understood from a reconstruction of the NiFe phase to expose more Ni(2) sites. This was likely driven by the formation of surface Ni-S bonds, which could be observed by EXAFS in spent samples. / Ph. D.
|
3 |
Maturation de sites métalliques de protéines par les machineries d'assemblage des centres fer-soufre ISC et Hyd / Maturation of protein active sites containing metals by the iron-sulfur cluster biogenesis ISC and Hyd systemsPagnier, Adrien 02 November 2015 (has links)
De nombreuses protéines possèdent des cofacteurs inorganiques contenant des métaux de transition. Les propriétés physico-chimiques de ces métaux permettent aux enzymes qui les portent de catalyser des réactions impossibles par l'utilisation des seules potentialités chimiques des vingt-deux acides aminés. Cependant, ces métaux sont toxiques pour la cellule lorsqu'ils sont libres. La synthèse et l'incorportion de ces cofacteurs dans les enzymes nécessitent alors des machineries protéiques complexes d'assemblage. Au cours de cette thèse, les mécanismes de synthèse des centres FeS par les machineries ISC (Iron-Sulfur Cluster) et Hyd (Hydrogenase) ont été étudiés. Le système ISC correspond à la machinerie primaire d'assemblage des centres FeS chez les bactéries, et un système équivalent existe chez les eucaryotes au niveau de la mitochondrie. Le système Hyd est la machinerie de maturation de l'hydrogénase à FeFe chez plusieurs eucaryotes inférieurs (algues et protistes) et dans une grande variété de bactéries. Dans un premier temps, nous nous sommes intéressés à la machinerie ISC d'Archaeoglobus fulgidus dont le coeur est composé de la cystéine désulfurase IscS et de la protéine échafaudage IscU ; IscS apportant le soufre nécessaire à l'assemblage du centre FeS sur IscU. Au cours de cette étude, il est apparu que IscS d'Archaeoglobus fulgidus ne possède pas d'activité cystéine désulfurase, mais qu'elle joue tout de même un rôle fondamental dans la synthèse du centre FeS sur le complexe IscSU en fournissant sa cystéine active en tant que ligand de l'agrégat. Dans un second temps, nous avons étudié la protéine à radical S-adénosyl-L-méthionine HydG, responsable de la synthèse des ligands CN- et CO du sous-agrégat à 2 Fe des hydrogénases à FeFe, qui était la seule maturase du système Hyd dont la structure n'était pas connue. Nos résultats structuraux et fonctionnels suggèrent que HydG synthétise successivement le ligand CN- dans un site actif basique, puis le ligand CO sur le cinquième Fe de son agrégat [5Fe-4S] C-terminal. Ce dernier pourrait être stabilisé par un ligand cystéine ou homocystéine. / Many proteins have inorganic cofactors containing transition metals. The physicochemical properties of these metals allow the enzymes, which carry them to catalyze reactions not possible when only using the chemical properties of the twenty-two amino acids. However, these metals are toxic to the cell when they are free. Consequently, the synthesis and incorporation of these cofactors into enzymes requires complex protein assembles. In this thesis, the FeS clusters synthesis mechanisms by the ISC (Iron-Sulfur Cluster) and Hyd (Hydrogenase) machineries were studied. The ISC system corresponds to the primary FeS clusters assembly machinery in bacteria, and a homologous system exists in mitochondria. The Hyd system is FeFe-hydrogenase active site maturation machinery found in several lower eukaryotes (algae and protists) and in a wide variety of bacteria. Initially, we studied the ISC machinery from Archaeoglobus fulgidus whose core is composed of the cysteine desulfurase IscS and the scaffold protein IscU; IscS delivers the sulfur needed for the FeS assembly to IscU. From this study we conclude that IscS from Archaeoglobus fulgidus has no cysteine desulfurase activity, but it still plays a fundamental role in FeS cluster synthesis by IscSU complex by providing a cysteine ligand to the nascent cluster. Secondly, we studied the radical S-adenosyl-L-methionine HydG, responsible for the synthesis of CN- and CO ligand of the active site [FeFe] subcluster, which was the only Hyd system maturase for which the structure was unknown. Our structural and functional results suggest that HydG successively synthesizes the CN- ligand at a basic site, and then the CO ligand at the unique fifth Fe ion of its C-terminal [5Fe-4S] cluster. The latter could be stabilized by either a cysteine or a homocysteine ligand.
|
4 |
Influence de la morphologie 2D de la phase active sur la sélectivité des catalyseurs sulfures en HDS des essences / Influence of 2D morphology of active phase on selectivity of sulfide catalysts in HDS of gasolineBaubet, Bertrand 24 April 2013 (has links)
Ce travail de thèse étudie l’influence de la morphologie des feuillets de sulfure de molybdène sur la sélectivité des catalyseurs d’hydrotraitement. Les feuillets de phase active présentent en effet deux types de bords appelés « M-edge » et « S-edge » susceptibles de conduire à des réactivités différentes. Le changement de la morphologie 2D des feuillets pourrait modifier les proportions de bords M et S exposés et ainsi les propriétés catalytiques des catalyseurs sulfures. Pour cela, des catalyseurs non promus (Mo) et promus (CoMo), supportés sur alumine ont été préparés par imprégnation à sec puis sulfurés dans des conditions variées (gaz et température). Des tests catalytiques en hydrodésulfuration (HDS) sélective des essences de FCC (sélectivité HDS/HYD) ont ensuite permis d’évaluer l’impact de la morphologie en s’appuyant sur des modèles géométriques construits à partir de calculs DFT et de caractérisations expérimentales (TEM, IR (CO), TPR, XPS). Les résultats obtenus pour les catalyseurs de type Mo semblent ainsi confirmer l’influence de la morphologie 2D sur la sélectivité HDS/HYD, le bord M paraissant être le plus sélectif pour les catalyseurs non promus. Ils mettent également en évidence l’importance de la réductibilité plus ou moins marquée des bords sur les propriétés catalytiques, notamment sur le bord M. Le changement des conditions de sulfuration semble donc affecter la morphologie des particules mais également les propriétés chimiques propres à chaque bord. En ce qui concerne les catalyseurs promus, la variation des conditions de sulfuration semble agir essentiellement au niveau de la répartition du promoteur entre les bords M et S. Cependant, les interactions avec le support paraissent constituer un frein aux effets de promotion. Dans ce contexte, les sulfurations à haute température sous H2S pur permettent d’obtenir des gains significatifs en activité et sélectivité. Ces résultats semblent dus à de faibles interactions avec le support et une décoration privilégiée du bord S qui pourrait favoriser la réaction d’HDS et limiter la réaction d’HYD. Au final, les interprétations effectuées en terme de morphologie 2D tendent à confirmer que ce paramètre peut constituer un axe de développement intéressant pour les catalyseurs d’hydrotraitement. L'optimisation des conditions de sulfuration permettraient bien de faire varier la morphologie et le taux de décoration du promoteur des catalyseurs, améliorant ainsi significativement l'activité et la sélectivité / This thesis examines the influence of the morphology of particles of molybdenum sulfide on selectivity of hydrotreating catalysts. Nanoparticles of active phase present two types of edges called “M-edge” and “S-edge” which may lead to different reactivities. The change in morphology of the 2D sheets could change the proportions of M and S edges exposed and thus the catalytic properties of sulfide catalysts. For this, non-promoted (Mo) and promoted (CoMo) catalysts, supported on alumina were prepared by dry impregnation and sulfide in various conditions (gas and temperature). Catalytic tests in selective hydrodesulfurization (HDS) of FCC gasoline (selectivity HDS /HYD) were then used to assess the impact of the morphology based on geometrical models which were constructed with DFT calculations and experimental characterizations (TEM, IR (CO), TPR, XPS). The results for Mo catalysts seem to confirm the influence of the 2D morphology selectivity HDS / HYD, M-edge appearing to be the most selective for non-promoted catalysts. They also highlight the importance of the reducibility more or less pronounced of the edges on the catalytic properties, especially on the M-edge. The different conditions of sulfidation seem to affect the morphology of the particles but also the specific chemical properties at each edge. Regarding to the promoted catalysts, the different conditions of sulfidation appear to act primarily at the distribution of the promoter between the M and S edges. However, interactions with the carrier appear to constitute an obstacle to promoting effects. In this context, sulfidations at high temperature in pure H2S lead to obtain significant gains in activity and selectivity. These results appear to be due to weak interactions with the carrier and to the presence of the promoter on the S-edge which could promote the HDS reaction and limit the HYD reaction. Finally, the interpretations made in terms of 2D morphology tend to confirm that this parameter can be an interesting line of development for hydrotreating catalysts. Optimization of the sulfidation conditions could effectively allow to vary the morphology and the rate of decoration of promoted catalysts which significantly improve the activity and selectivity
|
Page generated in 0.0402 seconds