1 |
Modélisation d'un palier hydrodynamique de réducteur épicycloïdal opérant en conditions sévères / Modeling of a planetary gearbox hydrodynamic journal bearing under severe operating conditionsPap, Bałint 29 May 2018 (has links)
De nombreux projets visant à réduire l’impact environnemental global des avions sont lancés au niveau européen. L’un des moteurs étudié pour les avions moyens et longs courriers est le moteur Ultra High Bypass Ratio (UHBR) : un moteur simple corps, double flux, à flux externe fortement augmenté. Le moteur UHBR doit être équipé d’un réducteur épicycloïdal, qui est un composant jamais utilisé dans un turboréacteur jusqu’à présent. L’optimisation d’un réducteur épicycloïdal a conduit à l’utilisation de paliers hydrodynamiques pour supporter les pignons satellites du porte-satellites.Pour une telle application, le palier hydrodynamique subit une déformation très élevée due aux charges de l’engrènement sur le pignon satellite et à l’effet centrifuge engendré par la rotation du porte-satellites. La géométrie optimisée des composants du palier varie avec le comportement thermique et mécanique des pièces, nécessitant la prise en compte d’une modélisation thermoélastohydrodynamique (TEHD).Afin de modéliser précisément ces phénomènes, un modèle conservatif dans la zone inactive en régime TEHD a été développé et validé à l’aide des résultats d’essais de la littérature et des bancs d’essais de Safran Transmission Systems. Les résultats obtenus montrent un double champ de pression dans le palier hydrodynamique du réducteur épicycloïdal, engendré par la forte déformation élastique du pignon agissant ainsi de façon significative sur le comportement dynamique du palier. De plus, l’influence de l’effet centrifuge sur l’huile dans le palier a été également examinée. / Several projects aimed at reducing the overall environmental impact of aircrafts are launched at European level. One of the engines studied for medium and long-haul aircraft is the Ultra High Bypass Ratio (UHBR) engine: a single-body, dual-flow gas turbine, with a greatly increased external flow rate. The UHBR engine must be equipped with an epicyclic reduction gearbox, which is a component never used before in a turbofan engine. The optimization of an epicyclic gearbox has resulted to the use of hydrodynamic bearings for supporting the satellite gears on the planet carrier.The hydrodynamic bearing of such application undergoes high deformations due to the gear contact loads on the satellite gear and to the centrifugal effect generated by the rotation of the planet carrier. The optimized geometry of the bearing components is influenced by the thermal and mechanical behavior of the bearing components, which requires a thermoelastohydrodynamic (TEHD) modeling taking into account the real film thickness under operation.In order to precisely simulate these phenomena, a conservative modeling in the inactive zone, under a TEHD regime has been developed and validated by comparing the predictions to the test results of the literature and of the test benches of Safran Transmission Systems. The results obtained show a double pressure field in the hydrodynamic bearing of the epicyclic reduction gearbox, due to the strongly deformed film thickness, which greatly affect the dynamic behavior of the bearing. In addition, the influence of the centrifugal force on the oil pressure in the oil film was also examined.
|
2 |
Σχεδιασμός υβριδικού εδράνου ολίσθησης (υδροδυναμικού - ηλεκτρομαγνητικού)Φαρμακόπουλος, Μιχαήλ 07 May 2015 (has links)
Η παρούσα διδακτορική διατριβή αναφέρεται σε έδρανα ολίσθησης. Συγκεκριμένα, αναφέρεται στο σχεδιασμό και την κατασκευή ενός νέου, πρωτότυπου υβριδικού εδράνου ολίσθησης, το οποίο έχει τη δυνατότητα να λειτουργεί είτε ως υδροδυναμικό, είτε ως ενεργό ηλεκτρομαγνητικό, είτε ως υβριδικό, δηλαδή υδροδυναμικό και ενεργό ηλεκτρομαγνητικό ταυτόχρονα.
Προκειμένου να πραγματοποιηθεί ο σχεδιασμός και η κατασκευή του συγκεκριμένου υβριδικού εδράνου ολίσθησης, έγιναν υπολογισμοί και προσομοίωση του υδροδυναμικού πεδίου για τα υδροδυναμικά έδρανα ολίσθησης και του ηλεκτρομαγνητικού πεδίου για τα ηλεκτρομαγνητικά έδρανα στο πρόγραμμα ANSYS. Η προσομοίωση των υβριδικών εδράνων ολίσθησης έγινε με επαναληπτική διαδικασία μεταξύ του υδροδυναμικού και του ηλεκτρομαγνητικού πεδίου προκειμένου να υπολογίζεται το κάθε επιθυμητό μέγεθος.
Για το σχεδιασμό του υβριδικού εδράνου ολίσθησης χρησιμοποιήθηκε το σχεδιαστικό πρόγραμμα CATIA.
Για την προσομοίωση του ελέγχου του υβριδικού εδράνου ολίσθησης, χρησιμοποιήθηκε το πρόγραμμα Matlab, το οποίο ενεργοποιεί το πρόγραμμα Ansys για τον υπολογισμό των χαρακτηριστικών του υδροδυναμικού και του ηλεκτρομαγνητικού πεδίου του εδράνου και το Simulink module του Matlab για τον υπολογισμό των χαρακτηριστικών του ελέγχου, ώστε να γίνονται όλοι οι απαραίτητοι υπολογισμοί αυτοματοποιημένα.
Τέλος, έγιναν υπολογισμοί και προσομοίωση δυναμικής περιστρεφόμενων αξόνων, με στήριξη του ρότορα σε δύο έδρανα και δίσκο προσαρμοσμένο στον ρότορα, στο πρόγραμμα Matlab, με σύνδεση με το Ansys για τον υπολογισμό των συντελεστών ελαστικότητας και απόσβεσης και το Simulink module του Matlab για τον υπολογισμό των χαρακτηριστικών του ελέγχου, με σκοπό την ολοκληρωμένη ανάλυση του συστήματος.
Συμπερασματικά, μέσω της συγκεκριμένης διδακτορικής διατριβής αποδεικνύεται πως ο σχεδιασμός, η λειτουργία και η κατασκευή του συγκεκριμένου πρωτότυπου υβριδικού εδράνου ολίσθησης είναι εφικτά, και από τα αποτελέσματα προκύπτει πως η λειτουργία ενός τέτοιου υβριδικού εδράνου ολίσθησης, έχει πολλά πλεονεκτήματα σε σχέση με άλλα έδρανα στήριξης περιστρεφόμενων αξόνων, είτε αυτά είναι απλά είτε υβριδικά και μπορεί να εφαρμοστεί είτε σε εργαστηριακό επίπεδο είτε σε βιομηχανικές εφαρμογές. / The present doctoral thesis refers to hydrodynamic journal bearings. Specifically, it refers to the design and construction of a new, innovative hybrid journal bearing, which has the ability to function either as hydrodynamic or active magnetic or hybrid, i.e. both hydrodynamic and active magnetic, at the same time.
In order to be performed the design and construction of the specific hybrid journal bearing, calculations and simulation of the hydrodynamic field for the hydrodynamic journal bearings in the program ANSYS, have been made. The simulation of the hybrid journal bearings has been made with iterative process, between the hydrodynamic and active magnetic field, so that every desired magnitude can be calculated.
For the design of the hybrid journal bearing, the designing program CATIA has been used.
For the simulation of the control of the hybrid journal bearing, the program Maltab has been used, which activates the program Ansys, for the calculation of the features of the hydrodynamic and active magnetic field of the bearing and the Simulink module of Maltab, for the calculation of the features of control, so that all necessary calculations can be made automated.
Finally, calculations and simulation of rotor dynamics, with support of the rotor in two bearings and disc adjusted to the rotor, in Maltab, in connection to Ansys, for the calculation of the elastic and damping coefficients and the Simulink module of Maltab, for the calculation of the features of control, have been made, having as a purpose the complete analysis of the system.
In conclusion, through the specific doctoral thesis, it is proved that the design, function and construction of the specific, new hybrid journal bearing, can be achieved and the results show that the function of such a hybrid journal bearing, has many advantages compared to other bearings of support of rotors, either they are simple or hybrid and it can be applied either to laboratory level or industrial applications.
|
3 |
Stabilité et dynamique non linéaire de rotors embarqués / Stability and nonlinear dynamics of on-board rotorsDakel, Zaki 12 September 2014 (has links)
Les rotors sont excités non seulement par le balourd tournant mais aussi par les différents mouvements de leur support : turbocompresseurs de véhicules, turbomoteurs aéronautiques, pompes à vide portées en sont des exemples industriels. Ainsi la conception de rotors robustes capables de bien fonctionner sous de telles conditions (excitations extrêmes) est nécessaire pour éviter des instabilités, source de défaillance catastrophique. Le présent travail a pour objectif de prévoir le comportement dynamique d’un rotor embarqué monté sur des paliers rigides ou élastiques hydrodynamiques et soumis à des excitations du support rigide. Les énergies cinétiques et de déformation ainsi que le travail virtuel des composants d’un rotor flexible tournant sont calculés. Le modèle proposé de rotor embarqué est basé sur les éléments finis de poutre de TIMOSHENKO. Il contient les effets relatifs à l’inertie de rotation des sections droites, à l’inertie gyroscopique, à la déformation de cisaillement d’arbre et à la dissymétrie géométrique de l’arbre et/ou du disque rigide et considère six types de mouvements déterministes (rotations et translations) du support. Suivant le type d’analyse utilisé pour le palier, les forces de rappel hydrodynamiques agissant sur l’arbre et calculées avec l’équation de REYNOLDS sont linéaires/non linéaires. L’utilisation des équations de LAGRANGE fournit les équations différentielles linéaires/non linéaires du mouvement du rotor embarqué en flexion par rapport au support mobile supposé rigide, qui représente un système de coordonnées non inertiel. Les équations du mouvement contiennent des termes paramétriques périodiques en raison de la dissymétrie géométrique du rotor et des termes paramétrique variables dans le temps en raison des rotations du support. Ces termes paramétriques sont considérés comme des sources d’excitation intérieure et conduisent à une instabilité dynamique latérale. Dans les applications numériques proposées, trois configurations de rotor embarqué sont analysées. Tout d’abord, un rotor symétrique monté sur des paliers rigides est soumis à un balourd combiné avec des mouvements de rotation constante et de translation sinusoïdale du support. Ensuite, un rotor avec une dissymétrie géométrique du disque monté sur des paliers rigides est excité par l’effet de balourd et par des mouvements combinés de rotation constante et de translation sinusoïdale du support. Enfin, un rotor symétrique monté sur des paliers hydrodynamiques est soumis au balourd et aux excitations sinusoïdales de rotation ou de translation du support. / Rotors are excited not only by the rotating mass unbalance but also by the different motions of their support: vehicle turbochargers, aircraft turbo-engines, carried vacuum pumps, are different industrial applications. Thus the design of robust rotors able to run well under such conditions (extreme excitations) and to avoid catastrophic failure is required. The present work aims to predict the dynamic behavior of an on-board rotor mounted on rigid or elastic hydrodynamic journal bearings and subjected to rigid support excitations. The kinetic and strain energies as well as the virtual work of the rotating flexible rotor components are computed. The proposed on-board rotor model is based on TIMOSHENKO beam finite elements. It includes the effects relative to the rotating inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric asymmetry of shaft and/or rigid disk and considers six types of deterministic motions (rotations and translations) of the support. Depending on the type of analysis used for the bearing, the restoring fluid film forces acting on the shaft and computed with the REYNOLDS equation are linear/non-linear. The use of LAGRANGE’s equations yields the linear/non-linear differential equations of vibratory motion of the on-board rotor in bending with respect to the moving rigid support which represents a non-inertial reference frame. The equations of motion contain periodic parametric coefficients because of the geometric asymmetry of the rotor and time-varying parametric coefficients because of the support rotations. These parametric coefficients are considered as sources of internal excitation and can lead to lateral dynamic instability. In the proposed numerical application examples, three rotor configurations are studied. Firstly, a symmetric rotor mounted on rigid bearings is subjected to rotating mass unbalance combined with constant rotation and sinusoidal translation of the support. Secondly, a rotor with geometric asymmetry due to the disk mounted on rigid bearings is excited by the mass unbalance effect and by the combination of a constant rotation and a sinusoidal translation of the support. Thirdly, a symmetric rotor mounted on linearized/non-linear hydrodynamic bearings is subjected to the excitation due to the mass unbalance and to the sinusoidal rotational or translational excitations of the support.
|
Page generated in 0.0767 seconds