• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation du comportement dynamique non-linéaire et transitoire de turbomoteur avec multitouches rotor/stator / Nonlinear and transient dynamic behavior modeling of a turbo-engine with rotor/stator multi-contacts

Duran, Celio 03 October 2014 (has links)
Cette thèse traite de la dynamique non-linéaire multi-contact des ensembles rotor/stator et s’applique en particulier aux tur-bomoteurs d’hélicoptère conçus par Turboméca, groupe Safran. L’amélioration des performances des turbines à gaz pousse les constructeurs à réduire les jeux fonctionnels rotor-stator no-tamment, tout en garantissant robustesse et fiabilité. Cela nécessite de développer des modèles les plus précis possible afin de prévoir et maîtriser des situations à risques telles que les interactions rotor/stator entre les parties fixes et tournantes déclen-chées principalement, dans le cas des turbomoteurs d’hélicoptère, par la perte d’aubes. La partie 1 présente une synthèse bibliographique des principaux phénomènes physiques rencontrés suite à une touche ro-tor/stator en s’appuyant sur l’expérimentation et le calcul. Un bilan sur les différents modèles numériques de gestion du con-tact frottant est détaillé. La dualité entre méthodes temporelles et fréquentielles est aussi abordée comme la méthode de la ba-lance harmonique et les schémas d’intégration temporelle de la famille de Newmark. Il est aussi décrit deux outils d’analyse fréquentielle : le spectrogramme pour analyser l’évolution d’un spectre fréquentiel dans le temps, le full-spectrum pour pren-dre en compte les précessions du rotor. La partie 2 se focalise sur des systèmes dynamiques académiques : un oscillateur forcé à double butées, un rotor de Jeffcott et un rotor à 3 disques avec tous deux une interaction disque/carter. Compte tenu du caractère transitoire du comportement des turbomoteurs, il s’agit de tester des méthodes d’intégration temporelle pas à pas et aussi des lois de contact. Il en ressort que la méthode de Newmark à accélération moyenne, et les lois de contact type « pénalité amortie » combinées à une régularisation de la raideur et de l’amortissement par une fonction arc tangente sont pertinentes. La modélisation de rotor en flexion en ré-gime transitoire et avec plusieurs touches possibles est réalisée avec la méthode des éléments finis et l’intégration des mé-thodes et techniques précédentes. L’ensemble de la modélisation est mise en œuvre sous l’environnement Matlab et se traduit au final par un logiciel nommé ToRoS (Touche Rotor-Stator). Le turbomoteur de l’Ardiden 1H fait l’objet de la dernière partie. Le logiciel ToRoS développé est utilisé pour prévoir la dyna-mique transitoire de sa turbine libre soumise à de multiples touches, consécutifs à un départ d’aubes. Les lois de contacts ap-pliquées dépendent du type de contact : disque/carter, labyrinthe/stator, palier/butée. Durant la descente en vitesse, la ligne d’arbre adopte, en fonction du niveau de balourd, de la vitesse de rotation, des paramètres du contact et du frottement, un comportement avec un contact quasi-permanent en précession directe. / This PhD thesis deals with the nonlinear transient dynamic response of rotor/stator assemblies in the case of multi-contacts, it is applied on Turbomeca’s helicopter turbo-engine. In order to improve gas turbine performances, constructors have to reduce rotor/stator clearances, while continuing to maintain component’s reliability, durability and safety. It implies the development of models to predict and control unsafe situations as, rotor/stator interactions between fixed and rotating parts, mainly triggered by a blade-loss in helicopters turbo-engine case. The first part of this document is concerned with a bibliographical summary of the main physical phenomena observed after a rotor/stator interaction, this is supported by experiments and numerical calculations. A review of the various sliding contact numerical models is presented. The duality between time and/or frequency simulation response methods as, harmonic balance method vs Newmark time integration scheme is discussed. Then two numerical tools for frequency domain analysis are described: the spectrogram to analyze frequency spectrum as a function of the time, the full-spectrum for analyzing the rotor whirl motions. The second part is focused on the time response simulation of some academic systems: an excited oscillator with two end-stops, a Jeffcott rotor and finally a 3 disks rotor both subjected to disk/casing interactions. Given the transient behavior exhibited by turbo-engine rotors following a rotor/stator contact, the purpose is to test several step-by-step time integration scheme combined with different contact laws. This analysis has shown that the Newmark scheme with constant acceleration used with damped contact penalty laws combined to stiffness and damping coefficients smoothed by arctangent functions are relevant. The rotor bending modeling during transient motion considering possible multi-contacts with the stator is realized using the finite element method and the previously reviewed contact modeling methods. The simulation is implemented under Matlab environment and is named ToRoS. (Rotor/Stator Touch). Finally, the developed modeling is applied to the Ardiden 1H turbo-engine. The ToRoS software is used to predict the transient dynamic response of the free power turbine subjected to multi-contacts, after a sudden blade-loss which is modeled by a sudden unbalance. Contact laws are applied and depend on contact type and location: disk/casing, seals, thrust bearing. Depending on the mass unbalance level, the speed of rotation, the contact and friction parameters, the rotor can be in a quasi-permanent contact state in forward whirl while the rotation speed is running-down
2

Suivi numérique des bifurcations pour l'analyse paramétrique de la dynamique non-linéaire des rotors / Numerical tracking of bifurcations for parametric analysis of nonlinear rotor dynamics

Xie, Lihan 03 March 2016 (has links)
Au cœur des moyens de transport, de transformation d'énergie, et de biens d'équipements, les machines tournantes peuvent avoir des comportements dynamiques complexes dus à de multiples sources de non linéarités liées aux paliers hydrodynamiques, à la présence de fissures, aux touches rotor-stator, ... Des phénomènes comme les décalages fréquentiels et donc de vitesses critiques, les cycles d'hystérésis avec sauts d'amplitudes, le changement brutal du contenu fréquentiel des réponses, sont des expressions de ces comportements. Résoudre les équations du mouvement induites par des modélisations avec des éléments finis de type poutre ou volumique, pour calculer les réponses à des sollicitations diverses (comme le balourd ou le poids propre), est réalisable avec des méthodes d'intégration pas à pas dans le temps mais au prix de temps de calcul prohibitifs. Cela devient particulièrement préjudiciable au stade du pré-dimensionnement où il est nécessaire de réaliser rapidement des études paramétriques. Aussi une alternative intéressante est de mettre en {\oe}uvre une méthode numérique, à la fois générale et efficace pour analyser la réponse non linéaire des rotors en régime stationnaire. La démarche proposée combine, dans un premier temps, la méthode de la balance harmonique (HBM) et la technique de bascule Temps-Fréquence (AFT) afin d'obtenir rapidement dans le domaine fréquentiel les réponses périodiques des rotors à grand nombre de degrés de liberté apportés par les éléments finis volumiques. Puis, l'association à la méthode de continuation par pseudo-longueur d'arc aboutit à établir continûment l'ensemble des solutions d'équilibre dynamique sur la plage de vitesse de rotation. Enfin la stabilité dynamique locale de la solution périodique est analysée grâce à des indicateurs de bifurcation basés sur l'évolution des exposants de Floquet. Ainsi sont détectées les bifurcations de branches de solutions périodiques de type point limite, point de branchement et notamment Neimark-Sacker. Leur localisation est déterminée précisément en résolvant un système augmenté constitué de l'équation du mouvement et d'une équation supplémentaire caractérisant le type de bifurcation considéré. En déclarant un paramètre du système (coefficient de frottement, jeu rotor/stator, amplitude de l'excitation,...) comme nouvelle variable, l'utilisation de la technique de continuation conjointement avec le système augmenté détermine directement le cheminement des bifurcations en fonction de ce paramètre sur la nappe des réponses non linéaires. Les suivis de bifurcations délimitent les zones de fonctionnement spécifiques, extraient efficacement l'essentiel du comportement dynamique et offrent ainsi une nouvelle approche pour dimensionner de façon efficace les systèmes notamment en rotation. Nombre des développements réalisés sont implantés dans le code de calcul Cast3M. / Generally speaking, the rotating systems utilized in the energy production have a small rotor-stator gap, are able to run during long periods, and are mounted on hydrodynamic bearings. Rotor-stator interactions in case of blade loss, crack propagation due to fatigue, and a variable stiffness due to the nonlinear restoring forces of the bearings can make the rotordynamics nonlinear and the responses complicated: significant amplitude and frequency shifts are introduced, sub- and super-harmonics appear, and hysteresis occurs. It is of great importance to understand, predict and control this complicated dynamics. Due to the large number of DOFs and the broad range of study frequency, the computation time for solving the equations of motion by a temporal integration method can be quite prohibitive. It becomes particularly disadvantageous at the design stage where a parametrical study need to be quickly performed. An alternative numerical method, which is general and effective at the same time, is proposed in order to analyse the nonlinear response of the rotors at steady state. Firstly, the periodic responses of nonlinear rotors are calculated in the frequency domain by combining harmonic balance method (HBM) and alternating frequency-time (AFT). With the help of continuation method, all dynamic equilibrium solutions of nonlinear systems are determined for the range of study frequency. Then, Floquet exponents which are the eigenvalues of Jacobian are sought for stability analysis of periodic solutions. Then the local stability of the periodic solution is analysed through the bifurcation indicators which are based on the evolution of Floquet exponents. The bifurcations of periodic solution branch, such as limit point, branch point, and Neimark-Sacker bifurcation, are thus detected. By declaring a system parameter (friction coefficient, rotor / stator gap, excitation amplitude, ...) as a new variable, applying once again the continuation method to the augmented system determines directly the bifurcation's evolution as a function of this parameter. Thus, parametric analysis of the nonlinear dynamic behaviour is achieved, the stability boundary or the regime change boundary is directly determined. Numerous developments are implemented in the calculation code Cast3M.
3

Identification et prévision du comportement dynamique des rotors feuilletés en flexion / Identification and prediction of the lateral dynamic behavior of laminated rotors

Mogenier, Guillaume 01 April 2011 (has links)
Cette thèse porte sur la prévision du comportement dynamique en flexion des rotors feuilletés à cage d'écureuil appelés MGV. La difficulté de la modélisation réside dans la complexité de l'assemblage de la masse magnétique, composée d'un empilement de tôles maintenues par des tirants excentrés précontraints, et d'une cage d'écureuil composée d'une distribution périphérique de barres de court circuit connectées à deux anneaux de court-circuit situés aux extrémités du feuilletage. Un modèle éléments finis de poutres de Timoshenko prenant en compte le caractère monolithique des MGV est développé. Le comportement dynamique latéral des rotors feuilletés est principalement régi par la rigidité de flexion de l'empilement dont les propriétés constitutives sont méconnues ce qui rend délicat la modélisation. Une approche d'identification numérique-expérimentale fournit une loi des propriétés constitutives de l'empilement en fonction des dimensions et précontraintes d'assemblage du feuilletage. Pour cela, les quantités modales calculées et mesurées sont incluses dans une fonctionnelle basée sur un quotient de Rayleigh hybride et combinée à des méthodes de réduction ou d'expansion. Les fonctionnelles proposées ont été testées dans diverses applications Industrielles. La modélisation des efforts centrifuges, de la raideur géométrique et du contact tirants-feuilletage a montré que l'effet de la rotation a une influence non linéaire qui tend à augmenter les forces longitudinales agissant sur le feuilletage et les tirants sans toutefois dépasser la limite élastique des tirants. La conséquence de ce phénomène est l'augmentation de la rigidité de flexion du feuilletage lors de la rotation. / This PhD thesis deals with the prediction of the lateral dynamics of squirrel cage laminated rotors known as HSM. The difficulty of the modeling is due to the complexity of the magnetic mass assembly, composed of a core of laminated steel held by excentric prestressed tie rods, and a squirrel cage consisting of a distribution of short-circuit rods also positioned at the periphery of the magnetic mass and connected to two short-circuit rings located at the ends of the laminated core. A finite element model of Timoshenko beams is developed that takes into account the monolithic nature of the HSM. The lateral behavior of laminated rotors is mainly governed by the bending rigidity of the stack whose constitutive properties are unknown and directly related to manufacturing process of the electrical machine which makes the modeling difficult. A numerical-experimental procedure provides the evolution of the constitutive properties of the lamination stack depending on the geometry and prestressed assembly. For this, predicted and measured modal are included in an functional based on a hybrid Rayleigh quotient combined with reduction or expansion methods. The proposed functional have been tested in various industrial. The modeling of the centrifugal loads, the geometric stiffness and the tie rods-stack contact have shown that the rotation effect have an influence that tends to increase the axial forces acting on the stack and the tie rods without exceeding the yield stress of the tie rods. The consequence of this effect is the increase of the bending rigidity of the magnetic core when the electric motor rotates.
4

Stabilité et dynamique non linéaire de rotors embarqués / Stability and nonlinear dynamics of on-board rotors

Dakel, Zaki 12 September 2014 (has links)
Les rotors sont excités non seulement par le balourd tournant mais aussi par les différents mouvements de leur support : turbocompresseurs de véhicules, turbomoteurs aéronautiques, pompes à vide portées en sont des exemples industriels. Ainsi la conception de rotors robustes capables de bien fonctionner sous de telles conditions (excitations extrêmes) est nécessaire pour éviter des instabilités, source de défaillance catastrophique. Le présent travail a pour objectif de prévoir le comportement dynamique d’un rotor embarqué monté sur des paliers rigides ou élastiques hydrodynamiques et soumis à des excitations du support rigide. Les énergies cinétiques et de déformation ainsi que le travail virtuel des composants d’un rotor flexible tournant sont calculés. Le modèle proposé de rotor embarqué est basé sur les éléments finis de poutre de TIMOSHENKO. Il contient les effets relatifs à l’inertie de rotation des sections droites, à l’inertie gyroscopique, à la déformation de cisaillement d’arbre et à la dissymétrie géométrique de l’arbre et/ou du disque rigide et considère six types de mouvements déterministes (rotations et translations) du support. Suivant le type d’analyse utilisé pour le palier, les forces de rappel hydrodynamiques agissant sur l’arbre et calculées avec l’équation de REYNOLDS sont linéaires/non linéaires. L’utilisation des équations de LAGRANGE fournit les équations différentielles linéaires/non linéaires du mouvement du rotor embarqué en flexion par rapport au support mobile supposé rigide, qui représente un système de coordonnées non inertiel. Les équations du mouvement contiennent des termes paramétriques périodiques en raison de la dissymétrie géométrique du rotor et des termes paramétrique variables dans le temps en raison des rotations du support. Ces termes paramétriques sont considérés comme des sources d’excitation intérieure et conduisent à une instabilité dynamique latérale. Dans les applications numériques proposées, trois configurations de rotor embarqué sont analysées. Tout d’abord, un rotor symétrique monté sur des paliers rigides est soumis à un balourd combiné avec des mouvements de rotation constante et de translation sinusoïdale du support. Ensuite, un rotor avec une dissymétrie géométrique du disque monté sur des paliers rigides est excité par l’effet de balourd et par des mouvements combinés de rotation constante et de translation sinusoïdale du support. Enfin, un rotor symétrique monté sur des paliers hydrodynamiques est soumis au balourd et aux excitations sinusoïdales de rotation ou de translation du support. / Rotors are excited not only by the rotating mass unbalance but also by the different motions of their support: vehicle turbochargers, aircraft turbo-engines, carried vacuum pumps, are different industrial applications. Thus the design of robust rotors able to run well under such conditions (extreme excitations) and to avoid catastrophic failure is required. The present work aims to predict the dynamic behavior of an on-board rotor mounted on rigid or elastic hydrodynamic journal bearings and subjected to rigid support excitations. The kinetic and strain energies as well as the virtual work of the rotating flexible rotor components are computed. The proposed on-board rotor model is based on TIMOSHENKO beam finite elements. It includes the effects relative to the rotating inertia, the gyroscopic inertia, the shear deformation of shaft as well as the geometric asymmetry of shaft and/or rigid disk and considers six types of deterministic motions (rotations and translations) of the support. Depending on the type of analysis used for the bearing, the restoring fluid film forces acting on the shaft and computed with the REYNOLDS equation are linear/non-linear. The use of LAGRANGE’s equations yields the linear/non-linear differential equations of vibratory motion of the on-board rotor in bending with respect to the moving rigid support which represents a non-inertial reference frame. The equations of motion contain periodic parametric coefficients because of the geometric asymmetry of the rotor and time-varying parametric coefficients because of the support rotations. These parametric coefficients are considered as sources of internal excitation and can lead to lateral dynamic instability. In the proposed numerical application examples, three rotor configurations are studied. Firstly, a symmetric rotor mounted on rigid bearings is subjected to rotating mass unbalance combined with constant rotation and sinusoidal translation of the support. Secondly, a rotor with geometric asymmetry due to the disk mounted on rigid bearings is excited by the mass unbalance effect and by the combination of a constant rotation and a sinusoidal translation of the support. Thirdly, a symmetric rotor mounted on linearized/non-linear hydrodynamic bearings is subjected to the excitation due to the mass unbalance and to the sinusoidal rotational or translational excitations of the support.
5

Nonlinear Normal Modes and multi-parametric continuation of bifurcations : Application to vibration absorbers and architectured MEMS sensors for mass detection / Modes nonlinéaires et continuation multiparamétrique de bifurcations : Application aux absorbeurs de vibrations et aux capteurs MEMS architecturés pour la détection de masse

Grenat, Clément 30 October 2018 (has links)
Un des buts de cette thèse est d’approfondir la compréhension de la dynamique non-linéaire, notamment celle des MEMS, en proposant de nouvelles méthodes d’analyse paramétrique et de calcul de modes normaux non-linéaires. Dans une première partie, les méthodes de détection, de localisation et de suivi de points de bifurcation selon un unique paramètre sont rappelées. Ensuite, une nouvelle méthode d’analyse multiparamétrique basée sur la continuation récursive d’extremums est présentée. Cette méthode est ensuite appliquée à un absorbeur de vibration non-linéaire afin de repousser l’apparition de solutions isolées. Deuxièmement, une méthode de calcul de modes normaux non-linéaires est présentée. Une condition de phase optimale et une régularisation de l’équation de mouvement sont proposées afin d’obtenir une méthode de continuation plus robuste au niveau des interactions modales. Ensuite, un problème quadratique aux valeurs propres modifié pour le calcul de stabilité et de points de bifurcation est présenté. Finalement, le calcul de modes normaux non-linéaires a été étendu aux systèmes non-conservatifs permettant la continuation des résonances d’énergie en déplacement et des résonances de phase. Troisièmement, la dynamique non-linéaire de réseaux de MEMS basé sur plusieurs micro-poutres résonantes est analysée à l’aide des méthodes proposées. Tout d'abord, un phénomène de synchronisation de points de bifurcations dû au couplage électrostatique dans les réseaux de MEMS est expliqué. Puis, la dynamique non-linéaire d'un réseau dissymétrisé par l'ajout d'une petite masse sur une micro-poutre est analysée. Enfin, des mécanismes de détection de masse exploitant ces phénomènes non-linéaires sont présentés. / One of the goals of this thesis is to enhance the comprehension of nonlinear dynamics, especially MEMS nonlinear dynamics, by proposing new methods for parametric analysis and for nonlinear normal modes computation. In a first part, methods for the detection, the localization and the tracking of bifurcation points with respect to a single parameter are recalled. Then, a new method for parametric analysis, based on recursive continuation of extremum, is presented. This method is then applied to a Nonlinear Tuned Vibration Absorber in order to push isolated solutions at higher amplitude of forcing. Secondly, a method is presented for the computation of nonlinear normal modes. An optimal phase condition and a relaxation of the equation of motion are proposed to obtain a continuation method able to handle modal interactions. Then, a quadratic eigenvalue problem is shifted to compute the stability and bifurcation points. Finally, nonlinear normal modes are extended to non-conservatives systems permitting the continuation of phase and energy resonances. Thirdly, the nonlinear dynamics of MEMS array, based on multiple resonant micro-beams, is analyzed with the help of the proposed methods. A frequency synchronization of bifurcation points due to the electrostatic coupling is discovered. Then, the nonlinear dynamics of a MEMS array after symmetry breaking event induced by the addition of a small mass onto one of the beam of the array is analyzed. Finally, mass detection mechanisms exploiting the discovered phenomena are presented.
6

Principes alternatifs pour la détection de masse ultime via la dynamique non linéaire de capteurs résonants M/NEMS / Alternative principles for ultimate mass detection via the nonlinear dynamics of M/NEMS resonant sensors

Nguyen, Van-Nghi 11 December 2013 (has links)
Les capteurs résonants de type M/NEMS sont largement utilisés dans l’environnement biologique pour la mesure de masse de biomolécules en raison de leur grande précision combinée à une taille réduite. Classiquement, la détection et la quantification se basent sur le décalage fréquentiel induit par la masse ajoutée. Toutefois, ce décalage devient très faible et difficile à distinguer du bruit de mesure lorsque les masses considérées sont très petites. Il est théoriquement possible de gagner encore un ou plusieurs ordres de grandeur en résolution avec ces méthodes fréquentielles en diminuant encore les tailles et/ou en augmentant le rapport signal sur bruit, c’est-à-dire en actionnant de manière plus importante les résonateurs. Mais, dans ces conditions, les nanorésonateurs ont un comportement très fortement non-linéaire, source d’instabilités et de mixage de bruit basses et hautes fréquences susceptibles de dégrader la fiabilité et la précision des mesures. C’est pourquoi cette thèse a pour objectif de définir des principes de détection alternatifs basés sur l’exploitation des phénomènes non-linéaires, tels que les comportements hystérétiques et les bifurcations des courbes de réponse en fréquence. Pour cela, un modèle réduit de micro/nano-poutre résonante avec actionnement électrostatique est considéré. Les résultats numériques montrent que les brusques sauts d’amplitude à proximité des points de bifurcation permettent la détection de masses très faibles. Contrairement à la détection fréquentielle, ces sauts sont d’autant plus grands que la masse additionnelle est petite, ce qui rend cette technique particulièrement intéressante. De plus, le seuil de détection peut être ajusté avec la valeur de la fréquence de fonctionnement. Un mécanisme de réinitialisation est toutefois indispensable pour rendre la détection à nouveau possible après un saut d’amplitude. Afin d’automatiser la réinitialisation et ainsi permettre la détection en temps réel, un concept totalement innovant de détection de masse par balayage en fréquence des cycles d’hystérésis est proposé, qui permet de détecter, quantifier et localiser la masse ajoutée sur la poutre résonante. La mise en réseau de plusieurs poutres résonantes est également traitée et constitue un premier pas vers la mise en oeuvre de réseaux de milliers de capteurs. Pour cela, des architectures efficaces sont proposées et les modèles numériques sont adaptés en conséquence. Sur des configurations symétriques, l’exploitation des bifurcations de type brisure de symétrie permet là-encore d’améliorer la détection de masse. / Resonant M/NEMS mass sensors are widely used in biological environment for measuring the mass of biomolecules due to their high accuracy combined with a reduced size. Usually, the detection and the quantification are based on the frequency shift induced by an added mass. However, this shift becomes very small and difficult to distinguish from the noise of measurement as the considered masses are tiny. It is theoretically possible to increase further one or several orders of magnitude in resolution with these frequency methods by further reducing size and/or by increasing the signal-to-noise ratio, that is to say by operating more importantly the resonators. But in these conditions, the nanoresonators have a strongly nonlinear behavior, a source of instability and noise mix of low and high frequencies likely to degrade the reliability and the accuracy of measurements. Therefore, the thesis’s objective is to define alternative principles of detection based on exploiting the nonlinear phenomena, such as the hysteretic behavior and the bifurcations of frequency-response curves. To this end, a reduced model of resonant micro/nano-beam with electrostatic actuation is considered. The numerical results show that the sudden jumps in amplitude close to bifurcation points allow the detection of very small masses. Unlike the frequency detection, the smaller the added mass, the larger the increase of the jump, which makes this technique particularly interesting. In addition, the detection threshold can be adjusted with the value of the operating frequency. However, a mechanism of reinitialization is mandatory to make the detection possible again after a jump in amplitude. In order to automate the reinitialization and allow the detection in real-time, a completely innovative concept of mass detection by the frequency sweep of the hysteretic cycles is proposed to detect, quantify and locate the added mass on the resonant beam. An array of several resonant beams is also considered and constitutes a first step toward the implementation of arrays of thousands of sensors. Efficient architectures are proposed for this purpose and the numerical models are adapted accordingly. On symmetric configurations, exploiting the bifurcations of symmetry-breaking type allows here again to improve the mass detection.

Page generated in 0.0209 seconds