• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multi-Modal Control: From Motion Description Languages to Optimal Control

Delmotte, Florent 16 November 2006 (has links)
The goal of the proposed research is to provide efficient methods for defining, selecting and encoding multi-modal control programs. To this end, modes are recovered from system observations, i.e. quantized input-output strings are converted into consistent mode sequences within the Motion Description Language (MDL) framework. The design of such modes can help identify and predict the behaviors of complex systems (e.g. biological systems such as insects) and inspire the design and control of robust semi-autonomous systems (e.g. navigating robots). In this work, the efficiency of a method will be defined by the complexity and expressiveness of specific control programs. The insistence on low-complexity programs is originally motivated by communication constraints on the computer control of semi-autonomous systems, but also by our belief that, as complex as they may look, natural systems indeed use short motion schemes with few basic behaviors. The attention is first focused on the design of such short-length, few-distinct-modes mode sequences within the MDL framework. Optimal control problems are then addressed. In particular, given a mode sequence, the question of deciding when the system should switch from one mode to another in order to achieve some reachability requirements is studied. Finally, we propose to investigate how sampling strategies affect complexity and reachability, and how an acceptable trade-off between these conflicting entities can be reached.
2

Active Vibration Control Using Modal Control and Experimental Implementation on Arduino Microcontroller

Chaudhary, Vikrant January 2014 (has links)
No description available.
3

[pt] CONTROLE MODAL EM SISTEMAS MULTIVARIÁVEIS APLICADO A SISTEMAS ELÉTRICOS DE POTÊNCIA / [en] MODAL CONTROL IN A MULTIVARIABLE SYSTEM APPLIED TO A POWER SYSTEM

MARCIO VICENTE RIZZO 23 January 2007 (has links)
[pt] Este trabalho apresenta o desenvolvimento da teoria de controle modal em sistema multivariável a partir do conhecimento da matriz de transferência, H(S), que o caracteriza. Usa-se a técnica de representação no espaço de estado onde a descrição do sistema é feita por uma forma canônica controlável, cujos elementos são obtidos diretamente de H (S). A partir do modelo de estado que representa o sistema e admitindo-se que o vetor de estado é obtido por estimação, obtém-se o sistema munido de um controlador de modo que, pela forma canônica escolhida, o espectro do sistema pode ser imposto. Em seguida aplica-se essa teoria a um sistema elétrico de potência constituído por duas áreas interligadas com intuito de impor a forma da reposta transitória devida a perturbações na demanda de potência ativa. O comportamento do sistema é simulado em computador digital com auxílio do programa CONTINUOUS SYSTEM MODELING PROGRAM - S/360-TRM, sendo os resultados apresentados em forma de gráficos. O problema de controle potência ativa - freqüência foi também abordado por Fosha e Elgerd [5], como um problema de otimização com função de custo quadrático, mas sua aplicação prática esbarra na escolha das matrizes que ponderam o estado de controle na função de custo e que fornecem o melhor transitório para o sistema. / [en] This thesis presents the developing of the modal control theory in a multivariable system starting on the knowledge of the transfer matrix, H(S), that characterize it. We use the state space representation technique where the description, of the system is made by a controlable canonic form, whose elements are got directly from H(S). Starting from the state model which represents the system and admitting that the state vector is obtained by estimation, we can get the system provided with a controller in a wav that, by the canonic form chosen, the system spectrum can be imposed. Afterwards, this theory could be applied to a power system made by two interconnected areas with a finality of imposing the form of the transient auswer due to perturbations at the demand of active power. The system behavior is simulated in digital computer helped by the CONTINUOUS SYSTEM MODELING PROGRAM - S/360- IBM, the results being presented in form of drawings. The problem of the active power - frequency control was seen by FOSHA and ELGERD [5] too as a problem of otimization with a quadratic cost function but their pratical application run into the choice of the matrices which ponder the state and the control at the cost function and supply the better transient for the system.
4

Optimal, Multi-Modal Control with Applications in Robotics

Mehta, Tejas R. 04 April 2007 (has links)
The objective of this dissertation is to incorporate the concept of optimality to multi-modal control and apply the theoretical results to obtain successful navigation strategies for autonomous mobile robots. The main idea in multi-modal control is to breakup a complex control task into simpler tasks. In particular, number of control modes are constructed, each with respect to a particular task, and these modes are combined according to some supervisory control logic in order to complete the overall control task. This way of modularizing the control task lends itself particularly well to the control of autonomous mobile robot, as evidenced by the success of behavior-based robotics. Many challenging and interesting research issues arise when employing multi-modal control. This thesis aims to address these issues within an optimal control framework. In particular, the contributions of this dissertation are as follows: We first addressed the problem of inferring global behaviors from a collection of local rules (i.e., feedback control laws). Next, we addressed the issue of adaptively varying the multi-modal control system to further improve performance. Inspired by adaptive multi-modal control, we presented a constructivist framework for the learning from example problem. This framework was applied to the DARPA sponsored Learning Applied to Ground Robots (LAGR) project. Next, we addressed the optimal control of multi-modal systems with infinite dimensional constraints. These constraints are formulated as multi-modal, multi-dimensional (M3D) systems, where the dimensions of the state and control spaces change between modes to account for the constraints, to ease the computational burdens associated with traditional methods. Finally, we used multi-modal control strategies to develop effective navigation strategies for autonomous mobile robots. The theoretical results presented in this thesis are verified by conducting simulated experiments using Matlab and actual experiments using the Magellan Pro robot platform and the LAGR robot. In closing, the main strength of multi-modal control lies in breaking up complex control task into simpler tasks. This divide-and-conquer approach helps modularize the control system. This has the same effect on complex control systems that object-oriented programming has for large-scale computer programs, namely it allows greater simplicity, flexibility, and adaptability.
5

Identification et prévision du comportement dynamique des rotors feuilletés en flexion / Identification and prediction of the lateral dynamic behavior of laminated rotors

Mogenier, Guillaume 01 April 2011 (has links)
Cette thèse porte sur la prévision du comportement dynamique en flexion des rotors feuilletés à cage d'écureuil appelés MGV. La difficulté de la modélisation réside dans la complexité de l'assemblage de la masse magnétique, composée d'un empilement de tôles maintenues par des tirants excentrés précontraints, et d'une cage d'écureuil composée d'une distribution périphérique de barres de court circuit connectées à deux anneaux de court-circuit situés aux extrémités du feuilletage. Un modèle éléments finis de poutres de Timoshenko prenant en compte le caractère monolithique des MGV est développé. Le comportement dynamique latéral des rotors feuilletés est principalement régi par la rigidité de flexion de l'empilement dont les propriétés constitutives sont méconnues ce qui rend délicat la modélisation. Une approche d'identification numérique-expérimentale fournit une loi des propriétés constitutives de l'empilement en fonction des dimensions et précontraintes d'assemblage du feuilletage. Pour cela, les quantités modales calculées et mesurées sont incluses dans une fonctionnelle basée sur un quotient de Rayleigh hybride et combinée à des méthodes de réduction ou d'expansion. Les fonctionnelles proposées ont été testées dans diverses applications Industrielles. La modélisation des efforts centrifuges, de la raideur géométrique et du contact tirants-feuilletage a montré que l'effet de la rotation a une influence non linéaire qui tend à augmenter les forces longitudinales agissant sur le feuilletage et les tirants sans toutefois dépasser la limite élastique des tirants. La conséquence de ce phénomène est l'augmentation de la rigidité de flexion du feuilletage lors de la rotation. / This PhD thesis deals with the prediction of the lateral dynamics of squirrel cage laminated rotors known as HSM. The difficulty of the modeling is due to the complexity of the magnetic mass assembly, composed of a core of laminated steel held by excentric prestressed tie rods, and a squirrel cage consisting of a distribution of short-circuit rods also positioned at the periphery of the magnetic mass and connected to two short-circuit rings located at the ends of the laminated core. A finite element model of Timoshenko beams is developed that takes into account the monolithic nature of the HSM. The lateral behavior of laminated rotors is mainly governed by the bending rigidity of the stack whose constitutive properties are unknown and directly related to manufacturing process of the electrical machine which makes the modeling difficult. A numerical-experimental procedure provides the evolution of the constitutive properties of the lamination stack depending on the geometry and prestressed assembly. For this, predicted and measured modal are included in an functional based on a hybrid Rayleigh quotient combined with reduction or expansion methods. The proposed functional have been tested in various industrial. The modeling of the centrifugal loads, the geometric stiffness and the tie rods-stack contact have shown that the rotation effect have an influence that tends to increase the axial forces acting on the stack and the tie rods without exceeding the yield stress of the tie rods. The consequence of this effect is the increase of the bending rigidity of the magnetic core when the electric motor rotates.
6

Enhanced self-powered vibration damping of smart structures by modal energy transfer / Amélioration du contrôle vibratoire autonome de smart structures par échange modal d’énergie

Wang, Zhen 20 July 2015 (has links)
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée. / In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy.
7

Advanced controllers for building energy management systems. Advanced controllers based on traditional mathematical methods (MIMO P+I, state-space, adaptive solutions with constraints) and intelligent solutions (fuzzy logic and genetic algorithms) are investigated for humidifying, ventilating and air-conditioning applications.

Ghazali, Abu Baker MHD. January 1996 (has links)
This thesis presents the design and implementation of control strategies for building energy management systems (BEMS). The controllers considered include the multi PI-loop controllers, state-space designs, constrained input and output MIMO adaptive controllers, fuzzy logic solutions and genetic algorithm techniques. The control performances of the designs developed using the various methods based on aspects such as regulation errors squared, energy consumptions and the settling periods are investigated for different designs. The aim of the control strategy is to regulate the room temperature and the humidity to required comfort levels. In this study the building system under study is a 3 input/ 2 output system subject to external disturbances/effects. The three inputs are heating, cooling and humidification, and the 2 outputs are room air temperature and relative humidity. The external disturbances consist of climatic effects and other stochastic influences. The study is carried out within a simulation environment using the mathematical model of the test room at Loughborough University and the designed control solutions are verified through experimental trials using the full-scale BMS facility at the University of Bradford.

Page generated in 0.0635 seconds