• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuzzy model based predictive control of chemical processes

Kandiah, Sivasothy January 1996 (has links)
The past few years have witnessed a rapid growth in the use of fuzzy logic controllers for the control of processes which are complex and ill-defined. These control systems, inspired by the approximate reasoning capabilities of humans under conditions of uncertainty and imprecision, consist of linguistic 'if-then' rules which depend on fuzzy set theory for representation and evaluation using computers. Even though the fuzzy rules can be built from purely heuristic knowledge such as a human operator's control strategy, a number of difficulties face the designer of such systems. For any reasonably complex chemical process, the number of rules required to ensure adequate control in all operating regions may be extremely large. Eliciting all of these rules and ensuring their consistency and completeness can be a daunting task. An alternative to modelling the operator's response is to model the process and then to incorporate the process model into some sort of model-based control scheme. The concept of Model Based Predictive Control (MB PC) has been heralded as one of the most significant control developments in recent years. It is now widely used in the chemical and petrochemical industry and it continues to attract a considerable amount of research. Its popularity can be attributed to its many remarkable features and its open methodology. The wide range of choice of model structures, prediction horizon and optimisation criteria allows the control designer to easily tailor MBPC to his application. Features sought from such controllers include better performance, ease of tuning, greater robustness, ability to handle process constraints, dead time compensation and the ability to control nonminimum phase and open loop unstable processes. The concept of MBPC is not restricted to single-input single-output (SISO) processes. Feedforward action can be introduced easily for compensation of measurable disturbances and the use of state-space model formulation allows the approach to be generalised easily to multi-input multi-output (MIMO) systems. Although many different MBPC schemes have emerged, linear process models derived from input-output data are often used either explicitly to predict future process behaviour and/or implicitly to calculate the control action even though many chemical processes exhibit nonlinear process behaviour. It is well-recognised that the inherent nonlinearity of many chemical processes presents a challenging control problem, especially where quality and/or economic performance are important demands. In this thesis, MBPC is incorporated into a nonlinear fuzzy modelling framework. Even though a control algorithm based on a 1-step ahead predictive control strategy has initially been examined, subsequent studies focus on determining the optimal controller output using a long-range predictive control strategy. The fuzzy modelling method proposed by Takagi and Sugeno has been used throughout the thesis. This modelling method uses fuzzy inference to combine the outputs of a number of auto-regressive linear sub-models to construct an overall nonlinear process model. The method provides a more compact model (hence requiring less computations) than fuzzy modelling methods using relational arrays. It also provides an improvement in modelling accuracy and effectively overcomes the problems arising from incomplete models that characterise relational fuzzy models. Difficulties in using traditional cost function and optimisation techniques with fuzzy models have led other researchers to use numerical search techniques for determining the controller output. The emphasis in this thesis has been on computationally efficient analytically derived control algorithms. The performance of the proposed control system is examined using simulations of the liquid level in a tank, a continuous stirred tank reactor (CSTR) system, a binary distillation column and a forced circulation evaporator system. The results demonstrate the ability of the proposed system to outperform more traditional control systems. The results also show that inspite of the greatly reduced computational requirement of our proposed controller, it is possible to equal or better the performance of some of the other fuzzy model based control systems that have been proposed in the literature. It is also shown in this thesis that the proposed control algorithm can be easily extended to address the requirements of time-varying processes and processes requiring compensation for disturbance inputs and dead times. The application of the control system to multivariable processes and the ability to incorporate explicit constraints in the optimisation process are also demonstrated.
2

Sklendinės ir skysčio lygio valdymas / Gate position and liquid level control

Valiulis, Gediminas 19 June 2005 (has links)
This master thesis deals with the virtual gate position and liquid level control system. The main characteristics of automatic control systems, fuzzy logic systems, their properties and formation principles are reviewed. Conventional and advanced control methods are presented pointing out their benefits, drawbacks and problems to be solved. Physical modelling and simulation issues are also discussed. Physical, mathematical, simulation and animation models of the system are produced. Position and level controllers are designed. The simulation of gate position and liquid level control processes is performed. The simulation model is built up using MATLAB Simulink and Fuzzy Logic Toolbox. The simulation results prove that the proportional controller fits very well for controlling gate position. However, the results of liquid level control “upwards” using PI controller are only satisfactory. Unsatisfactory results are obtained using the same controller for liquid level control “downwards”. Substantially better results are achieved using fuzzy logic controller. The models produced can be useful for further investigations and learning purposes.
3

Advanced controllers for building energy management systems. Advanced controllers based on traditional mathematical methods (MIMO P+I, state-space, adaptive solutions with constraints) and intelligent solutions (fuzzy logic and genetic algorithms) are investigated for humidifying, ventilating and air-conditioning applications.

Ghazali, Abu Baker MHD. January 1996 (has links)
This thesis presents the design and implementation of control strategies for building energy management systems (BEMS). The controllers considered include the multi PI-loop controllers, state-space designs, constrained input and output MIMO adaptive controllers, fuzzy logic solutions and genetic algorithm techniques. The control performances of the designs developed using the various methods based on aspects such as regulation errors squared, energy consumptions and the settling periods are investigated for different designs. The aim of the control strategy is to regulate the room temperature and the humidity to required comfort levels. In this study the building system under study is a 3 input/ 2 output system subject to external disturbances/effects. The three inputs are heating, cooling and humidification, and the 2 outputs are room air temperature and relative humidity. The external disturbances consist of climatic effects and other stochastic influences. The study is carried out within a simulation environment using the mathematical model of the test room at Loughborough University and the designed control solutions are verified through experimental trials using the full-scale BMS facility at the University of Bradford.

Page generated in 0.065 seconds