• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural vibration damping with synchronized energy transfer between piezoelectric patches / Amortissement vibratoire avec échange d'énergie synchronisé entre des éléments piézoélectriques

Li, Kaixiang 22 September 2011 (has links)
Les matériaux évolués tels que les matériaux composites ou les fibres de carbone sont de plus en plus utilisés dans l'industrie. Ils rendent les structures plus légères et plus résistantes mais en contrepartie, ils apportent de nouveaux problèmes de vibration. De nombreuses recherches sont ainsi en cours pour apporter des solutions afin d'éliminer les vibrations indésirables tout en restant compactes, légères, intelligentes et modulaires. Récemment, des techniques de contrôle non linéaires, dénommées en anglais S.S.D. (Synchronized Switch Damping) ont été proposées et validées. Ces méthodes font commutées un élément piézoélectrique collé à la structure mécanique à amortir sur un circuit électrique de manière synchronisée avec la déformation de celle-ci. Un effet amortissant peut ainsi être obtenu en utilisant l'énergie de vibration de la structure mécanique elle-même. Basée sur ces concepts, une nouvelle technique appelée S.S.D.E.T. (Synchronized Switch Damping with Energy Transfer) est proposée dans ce manuscrit. Cette méthode permet d'amortir une vibration en utilisant de l'énergie extraite à partir d'autres vibrations. Les résultats de ce travail de thèse sont présentés de la manière suivante. Premièrement, le principe et les lois de commande de la technique S.S.D.E.T. sont introduits. Ainsi, un modèle mathématique est établi et permet de vérifier les concepts proposés par simulation. Ensuite, des validations expérimentales menées sur différentes configurations sont décrites et démontrent l'augmentation de l'amortissement sur un système composé de deux structures mécaniquement indépendantes, sur un système composé d'une seule structure qui vibre selon plusieurs modes et sur une combinaison des deux précédents. Enfin, une extension de la technique S.S.D.E.T. est introduite dans un cadre d'échange d'énergie bidirectionnel. Celle-ci permet d'obtenir un amortissement privilégié sur un mode tout en conservant un contrôle correct des autres modes. / Advanced materials such as carbon fiber, composite materials et al. are more and more used in modern industry. They make the structures lighter and stiffer. However, they bring vibration problems. Researchers studied numerous methods to eliminate the undesirable vibrations. These treatments are expected to be a compact, light, intellectual and modular system. Recently, a nonlinear technique which is known as Synchronized Switch Damping (SSD) technique was proposed. These techniques synchronously switched when structure got to its displacement extremes that leading to a nonlinear voltage on the piezoelectric elements. This resulting voltage showed a time lag with the piezoelectric strain thus causing energy dissipation. Based on the developed SSD techniques, a new synchronized switch damping e.g. Synchronized Switch Damping with Energy Transfer (SSDET) was proposed in this document. This method damped the vibration by using the energy from other vibrating form. The objectives of the work reported in this document were threefold. The first one consisted of introduction of SSDET principle and developing its control law. This part aimed at establishing the mathematical model and verifying the proposed method by mathematical tools. Then, the experimental validations were carried out. Three experiments with different configurations demonstrated that SSDET can be implemented not only between structures but also vibrating modes in one structure. A SSDET scheme with multi-patches was also investigated for improving the damping. Finally, a bidirectional SSDET concept was introduced based on the original SSDET technique. This technique be regarded as a multimode control SSDET. Since it privileged the target vibration while keeps a decent control effect on the source vibration.
2

Enhanced self-powered vibration damping of smart structures by modal energy transfer / Amélioration du contrôle vibratoire autonome de smart structures par échange modal d’énergie

Wang, Zhen 20 July 2015 (has links)
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée. / In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy.

Page generated in 0.0714 seconds