• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Removal of siloxanes from biogas

Hepburn, Caroline Amy January 2014 (has links)
Economic utilisation of biogas arising from sewage sludge is hampered by the need to remove siloxanes, which damage gas engines upon combustion. This thesis applies on-line Fourier transform infrared spectroscopy to measure siloxanes in biogas upstream and downstream of the activated carbon vessels designed to adsorb siloxanes. On-line analysis provides accurate measurement of siloxane concentrations with a detection limit below the siloxane limits set by engine manufacturers, high data intensity and timely identification of breakthrough. Cost savings of up to £0.007 kWh- 1 may be realised compared to existing grab sampling. Using on-line analysis, the performance of full-scale and bench-scale carbon vessels were measured. Full-scale carbon contactors are typically operated at Reynold’s numbers close to the boundary between the laminar and transitional regimes (Re = 40 - 55). This thesis demonstrates, at full- and bench-scale, that increasing the Reynold’s number to site the adsorption process in the transitional regime increases media capacity, by 36% in dry gas and by 400% at 80% humidity. It is postulated that the change in gas velocity profile which occurs as Reynold’s number increases reduces the resistance to siloxane transport caused by gas and water films around the carbon particles, and therefore increases the rate of the overall adsorption process. In the laminar regime (Re = 31) increasing humidity from zero to 80% led to the classical stepwise reduction in adsorption capacity observed by other researchers, caused by the increasing thickness of the water film, but in the transitional regime (Re = 73) increasing humidity had no effect as no significant water film develops. It is therefore recommended that siloxane adsorption vessels should be designed to operate at Reynold’s numbers above 55. By choosing a high aspect ratio (tall and thin) both Reynold’s number and contact time can be optimised.
2

Hydrodynamic and ballistic transport in high-mobility GaAs/AlGaAs heterostructures

Gupta, Adbhut 24 September 2021 (has links)
The understanding and study of electron transport in semiconductor systems has been the instigation behind the growth of semiconductor electronics industry which has enabled technological developments that are part of our everyday lives. However, most materials exhibit diffusive electron transport where electrons scatter off disorder (impurities, phonons, defects, etc.) inevitably present in the system, and lose their momentum. Advances in material science have led to the discovery of materials which are essentially disorder-free and exhibit exceptionally high mobilities, enabling transport physics beyond diffusive transport. In this work, we explore non-diffusive transport regimes, namely, the ballistic and hydrodynamic regimes in a high-mobility two-dimensional electron system in a GaAs quantum well in a GaAs/AlGaAs heterostructure. The hydrodynamic regime exhibits collective fluid-like behavior of electrons which leads to the formation of current vortices, attributable to the dominance of electron-electron interactions in this regime. The ballistic regime occurs at low temperatures, where electron-electron interactions are weak, constraining the electrons to scatter predominantly against the device boundaries. To study these non-diffusive regimes, we fabricate mesoscopic devices with multiple point contacts on the heterostructure, and perform variable-temperature (4.1 K to 40 K) zero-field nonlocal resistance measurements at various locations in the device to map the movement of electrons. The experiments, along with interpretation using kinetic simulations, demarcate hydrodynamic and ballistic regimes and establish the dominant role of electron-electron interactions in the hydrodynamic regime. To further understand the role of electron-electron interactions, we perform nonlocal resistance measurements in the presence of magnetic field in transverse magnetic focusing geometries under variable temperature (0.39 K to 36 K). Using our experimental results and insights from the kinetic simulations, we quantify electron-electron scattering length, while also highlighting the importance of electron-electron interactions even in ballistic transport. At a more fundamental level, we reveal the presence of current vortices in both hydrodynamic and surprisingly, ballistic regimes both in the presence and absence of magnetic field. We demonstrate that even the ballistic regime can manifest negative nonlocal resistances which should not be considered as the hallmark signature of hydrodynamic regime. The work sheds a new light on both hydrodynamic and ballistic transport in high-mobility solid-state systems, highlighting the similarities between these non-diffusive regimes and at the same time providing a way of effectively demarcating them using innovative device design, measurement schemes and one-to-one modeling. The similarities stem from total electron system momentum conservation in both the hydrodynamic and ballistic regimes. The work also presents a sensitive and precise experimental technique for measuring electron-electron scattering length, which is a fundamental quantity in solid-state physics. / Doctor of Philosophy / Electrons are the charged particles that are bound around the nuclei of atoms. But sometimes in a solid material electrons break free away from the nuclei and wander around. They are then the carriers of electric current ubiquitous in our daily lives as in our homes, and in our electronic devices such as smartphones and computers. Often an analogy is made between the flow of electric current in a material and the flow of water in a stream. However, the analogy does not hold well for most materials. In most materials the motion of electrons can be thought of as balls in a pinball machine - their movement hindered and randomized by collisions with the countless defects and impurities present in the material they travel through. However, recently scientists have been able to synthesize ultraclean materials, where electrons can indeed mimic the flow of water under the right conditions. In this aptly-named hydrodynamic regime, electrons predominantly interact with each other and that leads to the formation of current whirlpools or vortices similar to those forming in water. A telling signature of this regime is a negative electrical resistance appearing near the location of the vortex. When the interactions between electrons are weak, such as at very low temperatures, electrons move along straight-line trajectories until they hit and bounce off the device edges, similar to billiard balls. This low-temperature phenomenon is called ballistic transport. In this work we reveal that measurement of negative resistance and formation of current vortices are not unique to the hydrodynamic regime but can occur in the ballistic regime as well. It is indeed counterintuitive that electrons moving like billiards balls can behave similarly to electrons flowing like water. The similarities can be traced back to a fundamental physics conservation law active in both situations, namely momentum conservation. To experimentally realize the tests, we use a very high purity semiconductor material GaAs/AlGaAs and fabricate tiny devices on the material with a cutting-edge design, capable of precisely measuring resistance at various locations along the device to map the movement of electrons. The simulations of the novel physics indeed reveal current vortices of various sizes in the ballistic regime, in agreement with the experimental data showing negative resistance. In another experiment, we apply a magnetic field, making the electrons move in circular paths. If uninterrupted, electrons complete half circles and are collected through an opening in the device, giving resistance peaks in experiments. Due to electron-electron interactions, the electrons on their circular trajectory are interrupted by other electrons which leads to a decay in resistance peaks. This decay is utilized to measure the strength of electron-electron interactions. The work has both fundamental and applied implications. The existence of whirlpools shows that the electron momentum is not lost by collisions, and that in turn means that the conduction of electrical current in these regimes is inherently efficient. This opens up avenues for electronic devices which are faster, more functional and more power efficient than present electronic devices.
3

Sensory landscape impacts on odor-mediated predator-prey interactions at multiple spatial scales in salt marsh communities

Wilson, Miranda L. 29 June 2011 (has links)
This collection of research examines how changes in the sensory landscape, mediated by both odor and hydrodynamic properties, impact odor-mediated predator-prey interactions in salt marsh communities. I approached this research using an interdisciplinary framework that combined field and laboratory experimentation to address issues of scale and make connections between predator behavior and patterns of predation in the field. I explored a variety of interactions mediated by changes in the sensory landscape including; indirect effects of biotic structure on associated prey, predator responses to patches of prey with differing density and distribution, and dynamic interactions between predators and prey distributions. I found that biotic structure (oyster reefs [Crassostrea virginica]) has negative indirect effects on associated hard clam prey (Mercenaria mercenaria) through the addition of oyster reef odor cues that attract predators (blue crabs [Callinectes sapidus] and knobbed whelks [Busycon carica])and increase foraging success near the structural matrix. Variation in the structure of patch-scale prey odor plumes created by multiple prey results in predator-specific patterns of predation as a function of patch density and distribution which are mediated by differences in predator sensory ability. There is a potential negative feedback loop between blue crab predators and hard clam prey distributions; clam patches assume random within-patch distributions after exposure to blue crab predators, making the detection of patches by future blue crab predators more difficult. Sensory landscapes are also mediated by water flow, which transports prey odor plumes downstream to predators. Characterization of water flow in small-scale estuary systems indicates that values of turbulent flow parameters are highly context specific and depend on both tidal type (spring, neap, normal) and site. Wind and tidal range seem to be good predictors for wave components and turbulent components of fluctuating flow parameters, respectively, although the strength of their predictive ability is dependent on time scale. Modifications of the sensory landscape through changes in structurally-induced turbulence, mixing of individual plumes from multiple prey, and bulk velocity and turbulence characteristics need to be considered when formulating predictions as to the impact of predators on naturally occurring prey populations in the field.

Page generated in 0.0629 seconds