Spelling suggestions: "subject:"microfracture"" "subject:"microfractures""
1 |
Hydraulic fracture experiments in a frictional material and approximations for maximum allowable mud pressureElwood, David E.Y. 07 August 2008 (has links)
Directional drilling has become a popular construction method used by municipalities, contractors and engineers alike for the construction of new subsurface pipelines while minimizing impact on the surrounding community. Pressurized drilling fluid is used during the advancement of the borehole through granular materials to maintain borehole stability throughout the drill path. It is believed that failure of the soil surrounding the borehole is controlled by the shear strength of this frictional ground and this influences the maximum allowable mud pressure that may be applied to the borehole. While there have been a number of theoretical studies, there have been few if any experimental investigations to examine the efficacy of the proposed design equations.
The basis of this research considers a horizontal directionally drilled borehole and compares the analytical findings with those obtained from a series of smaller and larger-scale laboratory experiments for a uniformly graded sand and layered sand - sand and gravel case. The analytical solutions are considered reasonable for hydrofracture during pullback, but may not be directly applicable to blowout during pilot borehole drilling such as the model researched in the experiments.
During the experiments the downhole mud pressures were continuously monitored and observations of composite drilling fluid and sand material were made. Smaller-scale experiments were carried out to determine the response of the horizontal stresses resulting from internal pressurization acting on the sidewalls of the test cell. During the larger-scale experiments, the surface displacements were measured to better understand the influence of an increase in the soil volume with surface displacement.
iii
Through the course of the research, physical information has been collected regarding the changes that a clean sand undergoes when in contact with a drilling fluid, the ability of a borehole to resist internal loading, and the effectiveness of the various analytical models currently used to estimate the peak allowable internal fluid pressures. In addition, physical data has been collected regarding the displacement of a surrounding material during the introduction of drilling fluid into a horizontally drilled borehole / Thesis (Master, Civil Engineering) -- Queen's University, 2008-07-25 14:16:41.951
|
2 |
Efficient Computation of Electromagnetic Waves in Hydrocarbon Exploration Using the Improved Numerical Mode Matching (NMM) MethodDai, Junwen January 2016 (has links)
<p>In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.</p><p>In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.</p><p>Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.</p> / Dissertation
|
3 |
Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing framework / Raffinement spatio-temporel par une approche de Galerkin discontinue en élastodynamique pour le calcul haute performanceDudouit, Yohann 08 December 2014 (has links)
Cette thèse étudie le raffinement local de maillage à la fois en espace et en temps pour l’équation de l’elastodynamique du second ordre pour le calcul haute performance. L’objectif est de mettre en place des méthodes numériques pour traiter des hétérogénéités de petite taille ayant un impact important sur la propagation des ondes. Nous utilisons une approche par éléments finis de Galerkin discontinus avec pénalisation pour leur flexibilité et facilité de parallélisation. La formulation éléments finis que nous proposons a pour particularité d’être élasto-acoustique, pour pouvoir prendre en compte des hétérogénéités acoustiques de petite taille. Par ailleurs, nous proposons un terme de pénalisation optimisé qui est mieux adapté à l’équation de l’élastodynamique, conduisant en particulier à une meilleure condition CFL. Nous avons aussi amélioré une formulation PML du second ordre pour laquelle nous avons proposé une nouvelle discrétisation temporelle qui rend la formulation plus stable. En tirant parti de la p-adaptivité et des maillages non-conformes des méthodes de Galerkin discontinues combiné à une méthode de pas de temps local, nous avons grandement réduit le coût du raffinement local. Ces méthodes ont été implémentées en C++, en utilisant des techniques de template metaprogramming, au sein d’un code parallèle à mémoire distribuée (MPI) et partagée (OpenMP). Enfin, nous montrons le potentiel de notre approche sur des cas tests de validation et sur des cas plus réalistes avec des milieux présentant des hydrofractures. / This thesis studies local mesh refinement both in time and space for the second order elastodynamic equation in a high performance computing context. The objective is to develop numerical methods to treat small heterogeneities that have global impact on wave propagation. We use an internal penalty discontinuous Galerkin finite element approach for its flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also propose an optimized penalty term more suited to the elastodynamic equation that results in better CFL condition. We improve a second order PML formulation with an original time discretization that results in a more stable formulation. Using the p-adaptivity and nonconforming mesh capabilities of discontinuous Galerkin methods combined with a local time stepping method, we greatly reduce the high computational cost of local refinements. These methods have been implemented in C++, using template metaprogramming, in a distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show the potential of our methods on validation test cases and on more realistic test cases with medium including hydrofractures.
|
4 |
Remote sensing of rapidly draining supraglacial lakes on the Greenland Ice SheetWilliamson, Andrew Graham January 2018 (has links)
Supraglacial lakes in the ablation zone of the Greenland Ice Sheet (GrIS) often drain rapidly (in hours to days) by hydraulically-driven fracture (“hydrofracture”) in the summer. Hydrofracture can deliver large meltwater volumes to the ice-bed interface and open-up surface-to-bed connections, thereby routing surface meltwater to the subglacial system, altering basal water pressures and, consequently, the velocity profile of the GrIS. The study of rapidly draining lakes is thus important for developing coupled hydrology and ice-dynamics models, which can help predict the GrIS’s future mass balance. Remote sensing is commonly used to identify the location, timing and magnitude of rapid lake-drainage events for different regions of the GrIS and, with the increased availability of high-quality satellite data, may be able to offer additional insights into the GrIS’s surface hydrology. This study uses new remote-sensing datasets and develops novel analytical techniques to produce improved knowledge of rapidly draining lake behaviour in west Greenland over recent years. While many studies use 250 m MODerate-resolution Imaging Spectroradiometer (MODIS) imagery to monitor intra- and inter-annual changes to lakes on the GrIS, no existing research with MODIS calculates changes to individual and total lake volume using a physically-based method. The first aim of this research is to overcome this shortfall by developing a fully-automated lake area and volume tracking method (“the FAST algorithm”). For this, various methods for automatically calculating lake areas and volumes with MODIS are tested, and the best techniques are incorporated into the FAST algorithm. The FAST algorithm is applied to the land-terminating Paakitsoq and marine-terminating Store Glacier regions of west Greenland to investigate the incidence of rapid lake drainage in summer 2014. The validation and application of the FAST algorithm show that lake areas and volumes (using a physically-based method) can be calculated accurately using MODIS, that the new algorithm can identify rapidly draining lakes reliably, and that it therefore has the potential to be used widely across the GrIS to generate novel insights into rapidly draining lakes. The controls on rapid lake drainage remain unclear, making it difficult to incorporate lake drainage into models of GrIS hydrology. The second aspect of this study therefore investigates whether various hydrological, morphological, glaciological and surface-mass-balance controls can explain the incidence of rapid lake drainage on the GrIS. These potential controlling factors are examined within an Exploratory Data Analysis statistical technique to elicit statistical similarities and differences between the rapidly and non-rapidly draining lake types. The results show that the lake types are statistically indistinguishable for almost all factors, except lake area. It is impossible, therefore, to elicit an empirically-supported, deterministic method for predicting hydrofracture in models of GrIS hydrology. A frequent problem in remote sensing is the need to trade-off high spatial resolution for low temporal resolution, or vice versa. The final element of this thesis overcomes this problem in the context of monitoring lakes on the GrIS by adapting the FAST algorithm (to become “the FASTER algorithm”) to use with a combined Landsat 8 and Sentinel-2 satellite dataset. The FASTER algorithm is applied to a large, predominantly land-terminating region of west Greenland in summers 2016 and 2017 to track changes to lakes, identify rapidly draining lakes, and ascertain the extra quantity of information that can be generated by using the two satellites simultaneously rather than individually. The FASTER algorithm can monitor changes to lakes at both high spatial (10 to 30 m) and temporal (~3 days) resolution, overcoming the limitation of low spatial or temporal resolution associated with previous remote sensing of lakes on the GrIS. The combined dataset identifies many additional rapid lake-drainage events than would be possible with Landsat 8 or Sentinel-2 alone, due to their low temporal resolutions, or with MODIS, due to its inferior spatial resolution.
|
Page generated in 0.0558 seconds