• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 11
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Επίλυση προβλημάτων κυματικής διάδοσης σε σύνθετα υλικά με τη μέθοδο των συνοριακών στοιχείων

Βέρμπης, Ιωάννης 20 October 2009 (has links)
- / -
2

Elastodynamic Numerical Characterization of Adhesive Interfaces Using Spring and Cohesive Zone Models

Putta, Sriram 23 October 2019 (has links)
No description available.
3

Elastodynamic Characterization of Material Interfaces Using Spring Models

Athale, Madhura, Athale January 2017 (has links)
No description available.
4

Numerical Implementation of Elastodynamic Green's Function for Anisotropic Media

Fooladi, Samaneh, Fooladi, Samaneh January 2016 (has links)
Displacement Green's function is the building block for some semi-analytical methods like Boundary Element Method (BEM), Distributed Point Source Method (DPCM), etc. In this thesis, the displacement Green`s function in anisotropic media due to a time harmonic point force is studied. Unlike the isotropic media, the Green's function in anisotropic media does not have a closed form solution. The dynamic Green's function for an anisotropic medium can be written as a summation of singular and non-singular or regular parts. The singular part, being similar to the result of static Green's function, is in the form of an integral over an oblique circular path in 3D. This integral can be evaluated either by a numerical integration technique or can be converted to a summation of algebraic terms via the calculus of residue. The other part, which is the regular part, is in the form of an integral over the surface of a unit sphere. This integral needs to be evaluated numerically and its evaluation is considerably more time consuming than the singular part. Obtaining dynamic Green's function and its spatial derivatives involves calculation of these two types of integrals. The spatial derivatives of Green's function are important in calculating quantities like stress and stain tensors. The contribution of this thesis can be divided into two parts. In the first part, different integration techniques including Gauss Quadrature, Simpson's, Chebyshev, and Lebedev integration techniques are tried out and compared for evaluation of dynamic Green’s function. In addition the solution from the residue theorem is included for the singular part. The accuracy and performance of numerical implementation is studied in detail via different numerical examples. Convergence plots are used to analyze the numerical error for both Green's function and its derivatives. The second part of contribution of this thesis relates to the mathematical derivations. As mentioned above, the regular part of dynamic Green's function, being an integral over the surface of a unit sphere, is responsible for the majority of computational time. From symmetry properties, this integration domain can be reduced to a hemisphere, but no more simplification seems to be possible for a general anisotropic medium. In this thesis, the integration domain for regular part is further reduced to a quarter of a sphere for the particular case of transversely isotropic material. This reduction proposed for the first time in this thesis nearly halves the number of integration points for the evaluation of regular part of dynamic Green's function. It significantly reduces the computational time.
5

Analise de problemas elastodinamicos atraves do metodo dos elementos de contorno e do acoplamento elementos de contorno e elementos finitos / Analysis of elastodynamic problems through the boundary element method and coupling of boundary elements and finite elements

Rossi, Eliana Maria de Mello Francisco, 1955- 19 December 2007 (has links)
Orientador: Isaias Vizotto / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-09T23:33:25Z (GMT). No. of bitstreams: 1 Rossi_ElianaMariadeMelloFrancisco_D.pdf: 5414575 bytes, checksum: a7297eb374b268f3bf484ab58acbe942 (MD5) Previous issue date: 2007 / Resumo: Neste trabalho é estudado o problema da elastodinâmica translento através da formulação do Método dos Elementos de Contorno (MEC) e da formulação combinada desse método com o Método dos Elementos Finítos (MEF). O estudo dos problemas governados por uma equação de campo vetorlal através do Método dos Elementos de Contorno, com a solução fundamental de Kelvin, resulta numa de domínio que tem sido tratada através de duas técnicas. A primeira desenvolve a Integração no domínio por células e permite determinar a contribuição Inercial dos nós do contorno e dos pontos internos. A segunda, conhecida como Reciprocidade Dual, transforma a de domínio em uma série de integrais de contorno. Foi desenvolvida uma tecnica para a manipulação das matrizes globais do sistema de equações obtido através do Método dos Elementos de Contorno, que permitiu resolver o problema da dependência linear de linhas e colunas decorrente da análise de regiões com cantos ou angulosidades. O algorítmo criado para condensação dos nós foi testado para o caso estático e dinâmico. Diversos exemplos são apresentados para os dois métodos e para o acoplamnento. Os resultados obtidos foram comparados com as analíticas disponíveis ou então com as soluções provenientes da aplicação de outros métodos numéricos / Abstract: In this work is studied the problem of olastodynamic transient through the farmulation of Boundary Element Method (BEM) and the formulation of this method combined with the Finite Elements Method The study of the problems governed by an oquation of vector fieid through the BEM with Kevin fundamental solution, comes up in domain that has been handled by two techniques. The first develops the integration in the domain by cells and determines the nodes contribution of the inertíal rame and internal points. The second, known as Dual Recíprocíty, transforms the domain integral in boundary integrais. It was developed a tochnique for handling the matrix of the system of equations obtained by BEM, whích It solves the problem of the linear dependence of rows and Golumns arlsing frem the analysls of regions wlth comers ar sharp boundaries. The algorithm created for node condensation has been tested for statle and dynamie cases. Several examples are presented using the both methods and the coupling technique. The results obtained were comparod with the anal.ytical solutions avaílable or wíth solutions obtained from other numerícal methods / Doutorado / Estruturas / Doutor em Engenharia Civil
6

Elementos infinitos para tratamento de problemas da viscoelastodinamica estacionaria pelo metodo dos elementos finitos

Barros, Renato Marques de 01 October 1996 (has links)
Orientador: Euclides de Mesquita Neto / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-07-21T18:42:03Z (GMT). No. of bitstreams: 1 Barros_RenatoMarquesde_M.pdf: 29996661 bytes, checksum: 4ad59a26788d8dfab7be1c94a4ccce46 (MD5) Previous issue date: 1996 / Resumo: Este trabalho apresenta uma revisão e uma implementação numérica do método dos elementos finitos (MEF) no qual foram incluídos os chamados ¿elementos infinitos¿ visando a modelagem da condição de radiação de Sommerfeld ou do amortecimento geométrico em meios contínuos (visco-) elastodinâmico sem regime estacionário e cujos domínios são ilimitados. Após uma revisão geral sobre os tipos de elementos infinitos, o trabalho aborda formulações e implementações de elementos infinitos unidimensionais. Em particular são discutidos os elementos de decaimento exponencial e de mapeamento. Suas propriedades são investigadas através da modelagem da propagação de ondas em colunas ilimitadas de seção transversal variável, cônica e exponencial. Uma análise dos elementos infinitos propostos para tratamento de problemas multidimensionais segue à revisão da teoria da propagação de ondas em meios (visco-)elastodinâmicos. A análise bidimensional contida no trabalho utiliza um elemento de decaimento exponencial. As propriedades deste elemento são discutidas através da simulação da dinâmica de fundações rígidas, superficiais e engastadas, interagindo com solos modelados como semi-espaço, homogêneo e estratificado. Estas análises, de caráter inovador, revelam que o elemento escolhido é capaz de reproduzir acuradamente o comportamento de ondas não refletidas, se propagando ao infinito, ou seja a condição de radiação ou amortecimento geométrico / Abstract: The present thesis reports an overview and a numerical implementation of the Finite Element Method (FEM) in wich the so called ¿infinite elements¿ are included to model the Sommerfeld's radiation condition or the geometric damping in the stationary response of unbounded (visco-) elastic domains. Initially one dimensional infinite elements are formulated and implemented. The properties of the exponencial decay type and the mapping elements are investigated by means of the stationary response of semi-infinitecolumns of variable cross-section, conical and exponential. In the sequence the main issues of multidimensional (visco-) elastic wave propagation are presented, followed by a revision of the proposed infinite elements for two-and three dimensional analysis. For the two dimensional case a exponential decay type element is formulated and implemented. The properties of the 2D element are discussed on hand of the dynamic analysis of rigid foundations, surface and embeded, interacting with homogeneous and layered half-spaces. This rather innovative analysis reveals that the considered element is able to model accurately the rdiation condition on homogeneous and stratified unbounded domains / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
7

Acoplamento de interface Iterativo MEF—MEFE para problemas do tipo sólido-fluido no domínio do tempo

Silva, Jonathan Esteban Arroyo 27 March 2018 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2018-06-29T15:51:42Z No. of bitstreams: 0 / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-07-03T15:49:10Z (GMT) No. of bitstreams: 0 / Made available in DSpace on 2018-07-03T15:49:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2018-03-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho será proposto um método de acoplamento iterativo de interface com um esquema de subcycling no tempo eficiente e preciso. Este será aplicado a pro-blemas do tipo sólido-fluido discretizados, respectivamente, pelos métodos dos elementos finitos clássico (MEF) e espectral (MEFE). Adicionalmente, será proposta uma melhoria no esquema de subcycling, de modo que para convergir não sejam necessários métodos de relaxação. Aplicando o MEFE em subdomínios com geometrias pouco distorcidas, pode-se usufruir da alta precisão numérica com baixo custo de armazenamento oferecidos pelo método ao mesmo tempo em que é possível aplicar o MEF aos subdomínios com geometrias complexas, acrescentando versatilidade ao método. Diferentes exemplos nu-méricos são apresentados e analisados para demonstrar a precisão e a potencialidade das formulações numéricas propostas. / In this work, an iterative interface coupling method with an efficient and precise time subcycling scheme is proposed. It is applied to solid-fluid type problems discretized respectively by classical finite element method (FEM) and spectral finite element method (SFEM), additionally, an improvement in the subcycling scheme is proposed so as not to require relaxation methods to converge. Applying the SFEM in subdomains with low distorted geometries one can take advantage of the high numerical precision with low cost of storage offered by the method, while it is possible to apply the FEM in subdomains with complex geometries, adding versatility to the method. Many numerical examples are presented and analyzed here to show the accuracy and potentiality of the proposed numerical formulations.
8

Contributions à la simulation numérique en élastodynamique : découplage des ondes P et S, modèles asymptotiques pour la traversée de couches minces / Numerical methods for elastic wave propagation : P and S wave decoupling, asymptotic models for thin layers

Burel, Aliénor 04 July 2014 (has links)
Cette thèse porte sur la modélisation des ondes élastodynamiques dans deux situations particulières qui pénalisent les méthodes numériques utilisées pour simuler ces phénomènes. Dans la première partie, on se place dans le cas où les ondes de pression (ondes P) se propagent à une vitesse beaucoup plus grande que celle des ondes de cisaillement (ondes S). Les modèles numériques utilisés habituellement pour traiter cette configuration sont pénalisés par la plus petite vitesse qui dicte le choix du pas du schéma. Nous proposons ici un schéma qui découple numériquement, dans le volume, les ondes P et les ondes S, pour deux types de conditions de bord en utilisant la décomposition du déplacement en potentiels de Lamé, en deux dimensions. Les conditions aux limites de Dirichlet homogènes, qui sont des conditions essentielles pour la formulation classique en déplacement, deviennent des conditions naturelles, mais non standard, pour la formulation en potentiels qui se présente comme un système de deux équations d’ondes couplées par les conditions aux limites. Cette formulation préserve une énergie équivalente à l'énergie élastodynamique. Nous construisons un schéma éléments finis en espace et utilisons un thêta-schéma en temps sur les termes de bord afin de ne pas pénaliser la CFL et mener à une condition sur le pas de temps indépendante des termes de couplage au bord. Ce schéma préserve une énergie discrète. Le cas des conditions de surface libre mène à des instabilités. Nous les avons traitées comme des perturbations des conditions de Dirichlet, ce qui permet d'obtenir de bons résultats dans le domaine fréquentiel mais donne naissance à de sévères instabilités après discrétisation en temps. La seconde partie de la thèse est consacrée à la construction, l'analyse et la validation de conditions de transmission effectives (CTE) à travers une couche mince de matériau homogène et isotrope d'épaisseur constante h. Ici, la finesse de la couche affecte les schémas explicites usuels car le maillage de la couche avec des éléments suffisamment petits entraîne une diminution analogue du pas de temps critique via la condition CFL, tandis que l'on espère avec les CTE obtenir un pas de temps indépendant de l'épaisseur de la couche. Une analyse complète du cas de la bande mince rectiligne est donnée en deux et trois dimensions. Les conditions obtenues sont stables via la conservation d'une énergie et l'ordre de l'erreur d'approximation par rapport à l'épaisseur de la couche pour les conditions d'ordre 2 est de O(h^3). Des résultats numériques sont présentés pour les configurations bi et tridimensionnelles, ils valident les résultats de stabilité, d'estimation d'erreur et de conditions de stabilité de schémas en temps proposés, qui sont des modifications du schéma explicite utilisé en l'absence de couche mince. Enfin, le traitement d'une couche curviligne est effectué dans le cas bidimensionnel. Sa stabilité est à nouveau vérifiée par conservation d'énergie et des résultats numériques sont également présentés. / This work is dedicated to the modelling of elastodynamic waves in two particular situations for which standard numerical methods experience difficulties. In the first part, the case where the velocity of the pressure waves (P waves) is much greater than the velocity of the shear waves (S waves) is studied. When applied to this situation, standard explicit time-stepping methods are hampered by the fact that the mesh size is dictated by the smallest velocity. We develop a numerical scheme that uncouples the body S-waves and P-waves by exploiting the well-known representation of elastodynamic states in terms of Lamé potentials. Formulations are derived and analysed for the 2-D case, where both potentials are scalar functions. Homogeneous essential Dirichlet boundary conditions lead to non-standard natural conditions for our potential-based formulation. A system of two wave equations, coupled by two boundary conditions, is obtained. This formulation is energy-preserving. A discretization approach involving finite elements in space and a theta-scheme in time applied to the boundary unknowns inside the domain is proposed, so that the « natural » time step for each wave speed can be used. This scheme is shown to be also energy-preserving. The case of Neumann boundary conditions is also addressed. These conditions are treated as perturbations of the Dirichlet case, an approach which yields good results in the time-harmonic case while giving rise to severe instabilities in the time-discrete transient case. The second part of this thesis is concerned with the design, analysis, numerical approximation and implementation of effective transmission conditions (ETCs) for the propagation of elastic waves through a thin elastic layer with small uniform thickness h which is embedded in a reference elastic medium, under transient conditions, with both materials assumed to have isotropic properties. Here, the thinness of the layer has an adverse effect on usual explicit schemes, since meshing the layer with small elements will induce a corresponding reduction of the critical time step through a CFL condition, whereas it is expected that the layer-less CFL condition will remain valid if the layer is modelled using ETCs. First, a complete analysis is given in the case of a planar elastic layer, applicable to two- and three-dimensional situations. The stability of the proposed second-order ETC is established as the result of energy preservation, while the approximation error on the transmission solution is shown to be of order O(h^3) in energy norm. Numerical experiments, performed for two- and three-dimensional configurations, validate the theoretical findings on stability, approximation error and stability conditions of time-stepping schemes that are natural modifications of the explicit scheme used in the absence of a thin layer. Then, ETCs are also derived for the case of a curvilinear layer embedded in a two-dimensional elastic medium. Their stability is again proven as resulting from energy preservation and the theoretical results are illustrated with numerical experiments.
9

Análise elastodinâmica de placas através do método dos elementos de contorno com interação solo-estrutura / Elastodynamic analysis of plates, using the Boundary Element Method, with soil-structure interaction

Saulo Faria Almeida Barretto 27 November 1995 (has links)
A combinação do Método dos Elementos de Contorno e do Método dos Elementos Finitos é o procedimento usualmente empregado na análise da flexão de placas interagindo com o solo. Usando-se da associação de ambos os métodos pode-se tirar vantagens de cada um deles e, consequentemente, chegar a uma técnica melhorada para tratar com problemas práticos. Contudo, a formulação do MEF não representa bem as tensões e os esforços concentrados ao longo do contorno, que podem ocorrer devido à maior rigidez da placa quando comparada com o meio solo, como a formulação do MEC faz. Por isso, a flexão de placas sobre base elástica é aqui proposta utilizando-se apenas das formulações do MEC, ou seja, tanto os problemas tridimensionais quanto os problemas de placas são tratados pela formulação de contorno para casos elastostáticos e elastodinâmicos. Duas diferentes formas de tratar problemas de flexão elastodinâmica de placas são discutidas, enfatizando possíveis instabilidades numéricas que as duas técnicas podem exibir. Finalmente, depois de propor a combinação dos problemas tridimensional e de placas, os resultados de exemplos numéricos apresentados mostram as vantagens e desvantagens da técnica proposta. / The combination of the boundary element and the finite element methods is the usually employed procedure to analyse plates in the bending interacting with the supporting soil. By using the association of both methods one can take the advantage of each method and consequently reach an improved technique to deal with practical problems. However, the FEM formulation can not represent well the stress and effort concentrations along the boundary, that may occur due to the higher plate stiffness when compared with the soil media, as the BEM technique does. Therefore, the plate bending on elastic foundation is proposed here using only BEM formulations, i.e. both the three-dimensional and the plate problems are formulated by boundary formulations for the elastostatic and elastodynamic cases. Two different ways to deal with the elastodynamic plate bending problem are discussed, emphasizing possible numerical instabilities that those techniques may exhibit. Finally, after proposing the combination of the three-dimensional and plate problems, results of numerical examples presented to show the advantages and disadvantages of the proposed technique.
10

Análise elastodinâmica de placas através do método dos elementos de contorno com interação solo-estrutura / Elastodynamic analysis of plates, using the Boundary Element Method, with soil-structure interaction

Barretto, Saulo Faria Almeida 27 November 1995 (has links)
A combinação do Método dos Elementos de Contorno e do Método dos Elementos Finitos é o procedimento usualmente empregado na análise da flexão de placas interagindo com o solo. Usando-se da associação de ambos os métodos pode-se tirar vantagens de cada um deles e, consequentemente, chegar a uma técnica melhorada para tratar com problemas práticos. Contudo, a formulação do MEF não representa bem as tensões e os esforços concentrados ao longo do contorno, que podem ocorrer devido à maior rigidez da placa quando comparada com o meio solo, como a formulação do MEC faz. Por isso, a flexão de placas sobre base elástica é aqui proposta utilizando-se apenas das formulações do MEC, ou seja, tanto os problemas tridimensionais quanto os problemas de placas são tratados pela formulação de contorno para casos elastostáticos e elastodinâmicos. Duas diferentes formas de tratar problemas de flexão elastodinâmica de placas são discutidas, enfatizando possíveis instabilidades numéricas que as duas técnicas podem exibir. Finalmente, depois de propor a combinação dos problemas tridimensional e de placas, os resultados de exemplos numéricos apresentados mostram as vantagens e desvantagens da técnica proposta. / The combination of the boundary element and the finite element methods is the usually employed procedure to analyse plates in the bending interacting with the supporting soil. By using the association of both methods one can take the advantage of each method and consequently reach an improved technique to deal with practical problems. However, the FEM formulation can not represent well the stress and effort concentrations along the boundary, that may occur due to the higher plate stiffness when compared with the soil media, as the BEM technique does. Therefore, the plate bending on elastic foundation is proposed here using only BEM formulations, i.e. both the three-dimensional and the plate problems are formulated by boundary formulations for the elastostatic and elastodynamic cases. Two different ways to deal with the elastodynamic plate bending problem are discussed, emphasizing possible numerical instabilities that those techniques may exhibit. Finally, after proposing the combination of the three-dimensional and plate problems, results of numerical examples presented to show the advantages and disadvantages of the proposed technique.

Page generated in 0.0541 seconds