1 |
Proteinbiochemische, spektroskopische und röntgenkristallographische Untersuchung der Actinobakteriellen [NiFe]-Hydrogenase aus Ralstonia eutrophaSchäfer, Caspar 05 August 2014 (has links)
Im biogeochemischen Wasserstoffkreislauf erfolgt der überwiegende Teil der H2-Aufnahme aus der Atmosphäre durch die Böden. Erst seit kurzem ist bekannt, dass die Oxidation von Wasserstoff in Böden mutmaßlich durch eine Reihe von Bodenbakterien vermittelt wird, die zur Aufnahme von Wasserstoff in atmosphärischen Konzentrationen befähigt sind. Diese Bakterien codieren [NiFe]-Hydrogenasen einer neuen Gruppe, die als Gruppe 5 der [NiFe]-Hydrogenasen klassifiziert wurde. Auch das beta Proteobakterium Ralstonia eutropha besitzt die Gene einer derartigen Hydrogenase, die aufgrund ihrer Ähnlichkeit zu den sonst überwiegend in Actinobakterien gefundenen Vertretern der Gruppe 5 als „Actinobakterielle Hydrogenase“ (AH) benannt wurde. In der vorliegenden Arbeit wurde die AH aus R. eutropha als erste Gruppe 5-[NiFe]-Hydrogenase in reiner Form isoliert und eingehend durch unterschiedliche biochemische, spektroskopische und röntgenkristallographische Verfahren untersucht. Die hierbei erhaltenen Ergebnisse unterstützen die für Gruppe-5-[NiFe]-Hydrogenasen postulierte Funktion im Erhaltungsstoffwechsel der Organismen unter besonderen Bedingungen, schließen jedoch eine Beteiligung der AH an der hochaffinen Oxidation von Wasserstoff in Böden aus. Jedoch zeigt das Enzym die neuartige Eigenschaft der sauerstoffinsensitiven Wasserstoff-Oxidation, was auf die Anwesenheit eines ungewöhnlichen, durch 1 Aspartat und 3 Cysteine koordinierten [4Fe4S]-Clusters und der vermuteten Kopplung der Elektronentransportketten in der mutmaßlich physiologischen doppeldimeren Form des Enzyms zurückzuführen sein dürfte. Die Arbeit erweitert somit die Kenntnisse auf dem Gebiet der Sauerstofftoleranz von Hydrogenasen sowie der Eigenschaften der Gruppe 5-[NiFe]-Hydrogenasen und ihrer physiologischen Rolle in den betreffenden Organismen. / In the biogeochemical hydrogen cycle, the dominating process for hydrogen uptake from the atmosphere is performed in soils. Only recently it was shown that hydrogen oxidation in soils is presumably mediated by a number of soil-dwelling actinobacteria, which are enabled in high-affinity hydrogen uptake. These bacteria encode [NiFe] hydrogenases of a novel group classified as group 5 of [NiFe] hydrogenases. A hydrogenase of this group is also found in the beta proteobacterium Ralstonia eutropha and was named „Actinobacterial Hydrogenase“ (AH) for its similarity to the group 5 [NiFe] hydrogenases found in actinobacteria. In this work, the AH from R. eutropha was, as the first group 5 [NiFe] hydrogenase, purified to homogeinity and thoroughly characterized by various biochemical, spectroscopic and X-ray crystallographic methods. The results obtained hereby support the function in maintaining a basal metabolism under challenging conditions, that was postulated for group 5 [NiFe] hydrogenases. Yet, the results also exclude the possibility of the AH contributing to high-affinity hydrogen uptake in soils. However, the enzyme shows the novel property of being able of oxygen-insensitive hydrogen oxidation. This property is obviously connected to an unusual [4Fe4S] cluster coordinated by 1 aspartate and 3 cysteines, as well as to a supposed coupling of the electron transport chains in the double dimeric native form of the enzyme. Hence, this work broadens the knowledge in the field of oxygen tolerant hydrogen oxidation and provides new insights in the function of group 5 [NiFe] hydrogenases and their physiological role in the organisms.
|
2 |
Cyanobacterial Hydrogen Metabolism - Uptake Hydrogenase and Hydrogen Production by Nitrogenase in Filamentous CyanobacteriaLindberg, Pia January 2003 (has links)
<p>Molecular hydrogen is a potential energy carrier for the future. Nitrogen-fixing cyanobacteria are a group of photosynthetic microorganisms with the inherent ability to produce molecular hydrogen via the enzyme complex nitrogenase. This hydrogen is not released, however, but is recaptured by the bacteria using an uptake hydrogenase. In this thesis, genes involved in cyanobacterial hydrogen metabolism were examined, and the possibility of employing genetically modified cyanobacteria for hydrogen production was investigated.</p><p><i>Nostoc punctiforme</i> PCC 73102 (ATCC 29133) is a nitrogen-fixing filamentous cyanobacterium containing an uptake hydrogenase encoded by <i>hupSL</i>. The transcription of <i>hupSL</i> was characterised, and putative regulatory elements in the region upstream of the transcription start site were identified. One of these, a binding motif for the global nitrogen regulator NtcA, was further investigated by mobility shift assays, and it was found that the motif is functional in binding NtcA. Also, a set of genes involved in maturation of hydrogenases was identified in <i>N. punctiforme</i>, the <i>hypFCDEAB</i> operon. These genes were found to be situated upstream of <i>hupSL</i> in the opposite direction, and they were preceded by a previously unknown open reading frame, that was found to be transcribed as part of the same operon.</p><p>The potential for hydrogen production by filamentous cyanobacteria was investigated by studying mutant strains lacking an uptake hydrogenase. A mutant strain of <i>N. punctiforme</i> was constructed, where <i>hupL</i> was inactivated. It was found that cultures of this strain evolve hydrogen during nitrogen fixation. Gas exchange in the <i>hupL</i><sup>-</sup> mutant and in wild type <i>N. punctiforme</i> was measured using a mass spectrometer, and conditions under which hydrogen production from the nitrogenase could be increased at the expense of nitrogen fixation were identified. Growth and hydrogen production in continuous cultures of a Hup<sup>-</sup> mutant of the related strain <i>Nostoc</i> PCC 7120 were also studied. </p><p>This thesis advances the knowledge about cyanobacterial hydrogen metabolism and opens possibilities for further development of a process for hydrogen production using filamentous cyanobacteria.</p>
|
3 |
Cyanobacterial Hydrogen Metabolism - Uptake Hydrogenase and Hydrogen Production by Nitrogenase in Filamentous CyanobacteriaLindberg, Pia January 2003 (has links)
Molecular hydrogen is a potential energy carrier for the future. Nitrogen-fixing cyanobacteria are a group of photosynthetic microorganisms with the inherent ability to produce molecular hydrogen via the enzyme complex nitrogenase. This hydrogen is not released, however, but is recaptured by the bacteria using an uptake hydrogenase. In this thesis, genes involved in cyanobacterial hydrogen metabolism were examined, and the possibility of employing genetically modified cyanobacteria for hydrogen production was investigated. Nostoc punctiforme PCC 73102 (ATCC 29133) is a nitrogen-fixing filamentous cyanobacterium containing an uptake hydrogenase encoded by hupSL. The transcription of hupSL was characterised, and putative regulatory elements in the region upstream of the transcription start site were identified. One of these, a binding motif for the global nitrogen regulator NtcA, was further investigated by mobility shift assays, and it was found that the motif is functional in binding NtcA. Also, a set of genes involved in maturation of hydrogenases was identified in N. punctiforme, the hypFCDEAB operon. These genes were found to be situated upstream of hupSL in the opposite direction, and they were preceded by a previously unknown open reading frame, that was found to be transcribed as part of the same operon. The potential for hydrogen production by filamentous cyanobacteria was investigated by studying mutant strains lacking an uptake hydrogenase. A mutant strain of N. punctiforme was constructed, where hupL was inactivated. It was found that cultures of this strain evolve hydrogen during nitrogen fixation. Gas exchange in the hupL- mutant and in wild type N. punctiforme was measured using a mass spectrometer, and conditions under which hydrogen production from the nitrogenase could be increased at the expense of nitrogen fixation were identified. Growth and hydrogen production in continuous cultures of a Hup- mutant of the related strain Nostoc PCC 7120 were also studied. This thesis advances the knowledge about cyanobacterial hydrogen metabolism and opens possibilities for further development of a process for hydrogen production using filamentous cyanobacteria.
|
Page generated in 0.0595 seconds