Spelling suggestions: "subject:"hydrogenbonding"" "subject:"hydragenbonding""
201 |
Ammonia stabilized CarbanionsMichel, Reent 18 January 2017 (has links)
No description available.
|
202 |
Diagonal and Off-Diagonal Anharmonicity in Hydrogen-Bonded SystemsHeger, Matthias 20 April 2016 (has links)
No description available.
|
203 |
Hydrogen Bonded Phenols as Models for Redox-Active Tyrosines in EnzymesUtas, Josefin January 2006 (has links)
This thesis deals with the impact of hydrogen bonding on the properties of phenols. The possibility for tyrosine to form hydrogen bonds to other amino acids has been found to be important for its function as an electron transfer mediator in a number of important redox enzymes. This study has focused on modeling the function of tyrosine in Photosystem II, a crucial enzyme in the photosynthetic pathway of green plants. Hydrogen bonds between phenol and amines in both inter- and intramolecular systems have been studied with quantum chemical calculations and also in some solid-state structures involving phenol and imidazole. Different phenols linked to amines have been synthesized and their possibilities of forming intra- and intermolecular hydrogen bonds have been studied as well as the thermodynamics and kinetics of the generation of phenoxyl radicals via oxidation reactions. Since carboxylates may in principle act as hydrogen bond acceptors in a manner similar to imidazole, proton coupled electron transfer has also been studied for a few phenols intramolecularly hydrogen bonded to carboxylates with the aim to elucidate the mechanism for oxidation. Electron transfer in a new linked phenol—ruthenium(II)trisbipyridine complex was studied as well. The knowledge is important for the ultimate goal of the project, which is to transform solar energy into a fuel by an artificial mimic of the natural photosynthetic apparatus
|
204 |
Pressure Induced Structural Changes and Gas Diffusion Pathways in Monomeric Fluorescent ProteinsBhandari, Yuba R 28 March 2013 (has links)
Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel.
Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures.
I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.
|
205 |
Charge Transfer And Hydrogen Bonding Interactions In Ferrocenyl Schiff BasesPal, Sushanta Kumar 09 1900 (has links) (PDF)
No description available.
|
206 |
Mechanistic Understanding of Dissolution of Amorphous Solid DispersionsSugandha Saboo (8766711) 27 April 2020 (has links)
<p>As amorphous solid dispersions (ASDs) are more widely employed as a formulation strategy for poorly water-soluble drugs, there is a pressing need to increase the drug loading in these formulations. The drug loading is typically kept low to obtain the desired drug release rate, but often results in large or even multiple dosage units, which is undesirable from a patient compliance perspective. We have identified the cause of this conundrum to be the drug loading dependent dissolution mechanism of ASDs. At low drug loadings, the dissolution rate of ASDs is polymer-controlled, while at high drug loadings, the dissolution rate is drug-controlled and considerably slower. This phenomenon is most pronounced for ASDs with hydrophilic polymers, such as poly (vinylpyrrolidone-co-vinyl acetate) (PVPVA) and the change in dissolution mechanism from being polymer-controlled to drug-controlled has been attributed to water-induced amorphous-amorphous phase separation (AAPS) in higher drug loading ASD matrices of hydrophilic polymers. The drug loading limit for this switch has been found to be dependent on drug properties as well as drug-polymer interactions. Interestingly, drug-polymer hydrogen bonding interaction has been found to be detrimental and decrease the drug loading limit for polymer-controlled release while drug log P did not have any impact on this limit. Variable dissolution temperature studies indicated a detrimental impact on the polymer-controlled drug loading limit when the drug-rich phase (of phase separated ASD matrix) exists in a glassy state. ASDs with relatively hydrophobic polymers, such as hypromellose acetate succinate (HPMCAS), have been found to be polymer-controlled up to higher drug loadings. The mechanistic understanding obtained in this body of work can thus be adopted to develop strategies enabling ASD formulations with optimized performance and improved drug loading.</p>
|
207 |
Development of Novel π-Conjugated Compounds Based on Tripyrrin / トリピリンを基盤とした新規π共役化合物の創出Umetani, Masataka 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22269号 / 理博第4583号 / 新制||理||1658(附属図書館) / 京都大学大学院理学研究科化学専攻 / (主査)教授 大須賀 篤弘, 教授 時任 宣博, 教授 依光 英樹 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
208 |
Spectrofluorometric and Solubility Studies of Polycyclic Aromatic Hydrocarbons in Hydrogen Bonded Binary Solvent MixturesPowell, Joyce R., 1968- 05 1900 (has links)
The purpose of this dissertation is to investigate the behavior of polycyclic aromatic hydrocarbons (PAHs) in binary solvent systems and determine and/or develop predictive mathematical expressions for describing solutions in which hydrogen-bonding occurs.
|
209 |
Carboxylic Acids Under Vibrational Scrutiny: Experimental Reference Data to Benchmark Quantum Chemical CalculationsMeyer, Katharina 17 December 2019 (has links)
No description available.
|
210 |
Viologen-nucleobase derivatives: building blocks for functional materialsCiobanu, Marius 04 May 2015 (has links)
The main subject of this thesis is the synthesis and investigation of the properties and potential applications of a new class of hybrid compounds consisting of a rigid, electroactive 4,4’-bipyridinium core capped by nucleobase terminal groups with hydrogen bonding abilities.
A new series of small molecules consisting in a 4,4’-bipyridinium unit carrying thymine or/and adenine as capping groups was synthetized. The synthesis strategy implied the regioselective alkylation of thymine and adenine bases respectively, followed by coupling of the alkylated precursors to 4,4’-bipyridine unit via Menschutkin reaction. Electrochemical, spectroelectrochemical and optical investigations revealed an intramolecular charge transfer (CT) relationship between nucleobases as donors and 4,4’-bipyridinium unit as acceptor which is accompanied by a change in color and a shift of the reduction potentials (approx. 60 mV). The viologen-nucleobase derivatives, particularly viologens capped by thymine, were used as building blocks to create self-assembled functional nanostructures in the presence of complementary templates such as oligonucleotides or ssPNA analogues via thymine-adenine interactions. The viologen-thymine derivatives were found to partially precipitate oligonucleotides or plasmid DNA by mean of coulombic interactions and form stable polyplexes that could be used as potential gene delivery vectors. It was found that the number of positive charges, as well as the number of thymine units per viologen-thymine derivative determines whether the interaction with DNA is dominated by electrostatic or by hydrogen bonding interactions. New electroactive ionic liquid crystals were prepared by ion pairing of viologen-nucleobase dicationic species with amphiphilic 3,4,5-tris(dodecyloxy)benzene sulfonate anion. The nucleobases with ability to self-associate by hydrogen bonding were found to influence not just the thermotropic behavior, by decreasing transition temperature from crystalline to mesophase state, but also the supramolecular arrangement in solution. A versatile approach to functionalize mesoporous TiO2 film with viologen-nucleobase derivatives was developed consisting of hydrogen bonding layer-by-layer deposition of viologen-nucleobase derivatives on TiO2 surface using the thymine-adenine molecular recognition as driving force for immobilization. This method is promising and represents an easy way to construct optoelectronic device components as was demonstrated with the construction of a switchable electrochromic device.
|
Page generated in 0.0822 seconds