• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 35
  • 35
  • 31
  • 13
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 423
  • 67
  • 59
  • 57
  • 55
  • 45
  • 44
  • 36
  • 35
  • 32
  • 31
  • 31
  • 29
  • 28
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Improving Restoration Success of Winterfat: Influences of Hydrophobic Seed Coatings and Planting Depth on Seedling Emergence

Cook, Kyle Andrew 12 June 2023 (has links) (PDF)
In western North America, winterfat (Krascheninnikovia lanata (Pursh) A. Meeuse & Smit) is a valuable protein-rich subshrub whose restoration has been limited by poor seed flowability and low rates of seedling establishment. Seed flowability can be limited by a dense covering of hairs on winterfat fruits that can cause them to clog in mechanized equipment. Seedling establishment can be limited by premature germination of fall-sown seeds that can cause over-winter seedling mortality from freezing, pathogen attack, and winter drought. Seed coatings may provide a way to overcome both of these barriers to winterfat restoration. Coatings can compress hairs against the fruit and improve seed flowability, and a hydrophobic polymer within seed coatings can repel water and delay germination of fall-sown seeds until spring, when winter hazards have subsided, and conditions are more conducive to seedling establishment. With the advent of this technology, there is a need to establish cultural practices, such as optimal planting depth, for coated winterfat fruits. In chapter 1 of this thesis, we evaluated the influence of planting depth, seed coatings, and their interactions on winterfat seedling emergence under laboratory and field conditions. We predicted that seedling emergence would be greatest from shallow planting depths, and that coatings would not affect emergence. Results generally supported our hypothesis, with seedling emergence being highest from surface-sown and shallow-planted seeds for both non-coated (control) and coated winterfat fruits in laboratory and field conditions. Emergence from surface-sown seeds was more than two-fold greater than from the deepest planting depth (12.7 mm). Seed coatings improved emergence of surface-sown seeds compared to the control by 52 – 168% in the laboratory but had no effect in the field. As predicted, emergence was similar between coated and non-coated fruits when sown below the soil surface in both laboratory and field conditions. These results suggest that seed coatings may improve winterfat restoration success by improving flowability without inhibiting emergence, allowing the species to be used in more seeding projects. Winterfat seed coatings may be improved with the use of a hydrophobic polymer to delay germination of fall-sown seeds until spring. In chapter 2 of this thesis, we compared seedling emergence from non-coated seeds, calcium carbonate coated seeds (blank-coated), and seeds coated with calcium carbonate plus an exterior hydrophobic coating. We counted the number of live seedlings and those that had died after emerging, and calculated mortality percentages for each treatment. We hypothesized that emergence would be greatest from hydrophobic-coated seeds, and the results supported our hypothesis. Seedling emergence from hydrophobic-coated seeds was three-fold greater than the control, and five-fold greater than blank-coated seeds. Mortality percentages were highest for the control, lower for blank-coated seeds, and lowest for hydrophobic-coated seeds. Thus, hydrophobic seed coatings can improve winterfat seedling emergence, and so could be instrumental restoring this valuable species to degraded rangelands.
102

Evaporation of Water in Hydrophobic Confinement

Ghasemi, Mohsen January 2017 (has links)
No description available.
103

Development of an Icing Research Wind Tunnel at The University of Toledo

Whitacre, David L. January 2013 (has links)
No description available.
104

Modeling Bubble Coarsening in Froth Phase from First Principles

Park, Seungwoo 07 May 2015 (has links)
Between two neighboring air bubbles in a froth (or foam), a thin liquid film (TLF) is formed. As the bubbles rise upwards, the TLFs thin initially due to the capillary pressure created by curvature changes. As the film thicknesses (H) reach approximately 200 nm, the disjoining pressure created by surface forces in the films also begins to control the film drainage rate and affect the waves motions at the air/water interfaces. If the disjoining pressure is negative, both the film drainage and the capillary wave motion accelerate. When the TLF thins to a critical film thickness (Hcr), the amplitude of the wave motion grows suddenly and the two air/water interfaces touch each other, causing the TLF to rupture and bubbles to coalesce. In the present work, a new model that can predict Hcr has been developed by considering the film drainage due to both viscous film thinning and capillary wave motion. Based on the Hcr model, bubble-coarsening in a dynamic foam has been predicted by deriving the geometric relation between the thickness of the lamella film, which controls bubble-coalescence rate, and the Plateau border area, which controls liquid drainage rate. Furthermore, a model for predicting bubble-coarsening in froth (3-phase foam) has been developed by developing a film drainage model quantifying the effect of particles on pc. The parameter pc is affected by the number of particles and the local capillary pressure around particles, which in turn vary with the hydrophobicity and size of the particles in the film. Assuming that films rupture at free films, the pc corrected for the particles in lamella films has been used to determine the critical rupture time (tcr), at which the film thickness reaches Hcr, using the Reynolds equation. Assuming that the number of bubbles decrease exponentially with froth height, and knowing that bubbles coalesce when film drains to a thickness Hcr, a bubble coarsening model has been developed. The model predictions are in agreement with the experimental data obtained using particle of varying hydrophobicity and size. / Ph. D.
105

Hydrophobic Forces in Wetting Films

Pan, Lei 11 January 2010 (has links)
Flotation is an important separation process used in the mining industry. The process is based on hydrophobizing a selected mineral using an appropriate surfactant, so that an air bubble can spontaneously adhere on the mineral surface. The bubble-particle adhesion is possible only when the thin film of water between the bubble and particle ruptures, just like when two colloidal particles or air bubbles adhere with each other. Under most flotation conditions, however, both the double-layer and dispersion forces are repulsive, which makes it difficult to model the rupture of the wetting films using the DLVO theory. In the present work, we have measured the kinetics of film thinning between air bubble and flat surfaces of gold and silica. The former was hydrophobized by ex-site potassium amyl xanthate, while the latter by in-site Octadecyltrimetylammonium chlroride. The kinetics curves obtained with and without theses hydrophobizing agents were fitted to the Reynolds lubrication theory by assuming that the driving force for film thinning was the sum of capillary pressure and the disjoining pressure in a thin film. It was found that the kinetics curves obtained with hydrophilic surfaces can be fitted to the theory with the disjoining pressure calculated from the DLVO theory. With hydrophobized surfaces, however, the kinetics curves can be fitted only by assuming the presence of a non-DLVO attractive force (or hydrophobic force) in the wetting films. The results obtained in the present work shows that long-range hydrophobic forces is responsible for the faster drainage of wetting film. It is shown that the changes in hydrophobic forces upon the thin water film between air bubble and hydrophobic surface is dependent on hydrophobizing agent concentration, immersion time and the electrolyte concentration in solution. The obtained hydrophobic forces constant in wetting film K132 is compared with the hydrophobic forces constant between two solid surfaces K131 to verify the combining rule for flotation. / Master of Science
106

Synthesis and Characterization of Hydrophobic-Hydrophilic  Multiblock Copolymers for Proton Exchange Membrane and Segmented Copolymer Precursors for Reverse Osmosis Applications

Mehta, Ishan 03 July 2014 (has links)
High performance engineering materials, poly(arylene ether)s, having very good mechanical properties, excellent oxidative and hydrolytic stability are promising candidates for alternative materials used in the field of Proton Exchange Membrane Fuel Cells (PEMFCs) and Reverse Osmosis (RO) applications. In particular, wholly aromatic sulfonated poly(arylene ether sulfone)s are of considerable interest in the field of PEMFCs and RO, due to their affordability, high Tg, and the ease of sulfonation. Proton exchange membrane fuels cells (PEMFCs) are one of the primary alternate source of energy. A Proton exchange membrane (PEM) is one of the key component in a PEMFC and it needs to have good proton conductivity under partially humidified conditions. One of the strategies to increase proton conductivity under partially RH conditions is to synthesize hydrophobic-hydrophilic multiblock copolymers with high Ion exchange capacity (IEC) values to ensure sufficient ion channel size. In this thesis two multiblock systems were synthesized incorporating trisulfonated hydrophilic oligomers and were characterized in the first two chapters of the thesis. The first multiblock system incorporated a non-fluorinated biphenol-based hydrophobic block. The second study was focused on synthesizing a fluorinated benzonitrile-based hydrophobic block. A fluorinated monomer was incorporated with the aim to improve phase separation which might lead to increased performance under partially humidified conditions. The third study featured synthesis and characterization of a novel hydroquinone-based random copolymer system precursor, which after post-sulfonation, shall form mono-sulfonated polysulfone materials with potential applications in reverse osmosis. The ratio of the amount of hydroquinone incorporated in the copolymer were varied during the synthesis of the precursor to facilitate control over the post-sulfonation process. The simple and low cost process of post-sulfonating the random copolymer enables the precursor to be a promising material to be used in the reverse osmosis application. / Master of Science
107

Developing a Novel Ultrafine Coal Dewatering Process

Huylo, Michael H. 13 January 2022 (has links)
Dewatering fine coal is needed in many applications but has remained a great challenge. The hydrophobic-hydrophilic separation (HHS) method is a powerful technology to address this problem. However, organic solvents in solvent-coal slurries produced during HHS must be recovered for the method to be economically viable. Here, the experimental studies of recovering solvents from pentane-coal and hexane-coal slurries by combining liquid-solid filtration and in-situ vaporization and removing the solvent by a carrier gas (i.e., drying) are reported. The filtration behaviors are studied under different solid mass loading and filtration pressure. It is shown that using pressure filtration driven by 20 psig nitrogen, over 95% of solvents by mass in the slurries can be recovered, and filtration cakes can be formed in 60 s. The drying behavior was studied using nitrogen and steam at different temperatures and pressures. It is shown that residual solvents in filtration cakes can be reduced below 1400 ppm within 10 s by 15 psig steam superheated to 150C, while other parameter combinations are far less effective in removing solvents. Physical processes involved in drying and the structure of solvent-laden filtration cakes are analyzed in light of these results. / Master of Science / Coal particles below a certain size are discarded to waste tailing ponds as there is no economically viable method for processing them. However, a new process called hydrophobic-hydrophilic separation offers a solution to this problem. A hydrophobic solvent is used to displace water from a coal-water slurry, and it is then easier and cheaper to filter and dry this new coal-solvent slurry. In this work experimental studies of recovering solvents from pentane-coal and hexane-coal slurries by combining filtration and drying are reported. The filtration behaviors are studied under different solid mass loading and filtration pressures. It is shown that using pressure filtration driven by 20 psig nitrogen, over 95% of solvents by mass in the slurry can be recovered, and filtration cakes can be formed in 60 s. The drying behavior was studied using nitrogen and steam at different temperatures and pressures to evaporate any remaining solvents. It is shown that the remaining solvents in filtration cakes can be reduced below 1400 ppm within 10 s by using 15 psig steam superheated to 150C as a drying medium, while other parameter combinations are far less effective in removing solvents. Physical processes involved in drying and the structure of solvent-laden filtration cakes are analyzed in light of these results.
108

Hydrophobic Forces in Flotation

Pazhianur, Rajesh R. 26 June 1999 (has links)
An atomic force microscope (AFM) has been used to conduct force measurements to better understand the role of hydrophobic forces in flotation. The force measurements were conducted between a flat mineral substrate and a hydrophobic glass sphere in aqueous solutions. It is assumed that the hydrophobic glass sphere may simulate the behavior of air bubbles during flotation. The results may provide information relevant to the bubble-particle interactions occurring during flotation. The glass sphere was hydrophobized by octadecyltrichlorosilane so that its water contact angle was 109 degrees. The mineral systems studied include covellite (CuS), sphalerite (ZnS) and hornblende (Ca₂(Mg, Fe)₅(Si₈O₂₂)(OH,F)₂). The collector used for all the mineral systems studied was potassium ethyl xanthate (KEX). For the covellite-xanthate system, a biopotentiostat was used in conjunction with the AFM to control the potential of the mineral surface during force measurements. This was necessary since the adsorption of xanthate is strongly dependent on the electrochemical potential (Eₕ) across the solid/liquid interface. The results show the presence of strong hydrophobic forces not accounted for by the DLVO (named after Derjaguin, Landau, Verwey and Overbeek) theory. Furthermore, the potential at which the strongest hydrophobic force was measured corresponds to the potential where the flotation recovery of covellite reaches a maximum, indicating a close relationship between the two. Direct force measurements were also conducted to study the mechanism of copper-activation of sphalerite. The force measurements conducted with unactivated sphalerite in 10⁻³ M KEX solutions did not show the presence of hydrophobic force while the results obtained with copper-activated sphalerite at pH 9.2 and 4.6 showed strong hydrophobic forces. However, at pH 6.8, no hydrophobic forces were observed, which explains why the flotation of sphalerite is depressed in the neutral pH regime. Direct force measurements were also conducted using hornblende in xanthate solutions to study the mechanism of inadvertent activation and flotation of rock minerals. The results show the presence of long-range hydrophobic forces when hornblende was activated by heavy metal cations such as Cu²⁺ and Ni²⁺ ions. The strong hydrophobic forces were observed at pHs above the precipitation pH of the activating cation. These results were confirmed by the XPS analysis of the activated hornblende samples. Force measurements were conducted between silanated silica surfaces to explore the relationship between hydrophobicity, advancing contact angle (CA), and the magnitude (K) of hydrophobic force. In general, K increases as Contact Angle increases and does so abruptly at Contact Angle=90°. At the same time, the acid-base component of the surface free energy decreases with increasing CA and K. At CA>90°, GammaS<sup>AB</sup> approaches zero. Based on the results obtained in the present work a mathematical model for the origin of the hydrophobic force has been developed. It is based on the premise that hydrophobic force originates from the attraction between large dipoles on two opposing surfaces. The model has been used successfully to fit the measured hydrophobic forces using dipole moment as the only adjustable parameter. However, the hydrophobic forces measured at CA>90° cannot be fitted to the model, indicating that there may be an additional mechanism, possibly cavitation, contributing to the appearance of the long-range hydrophobic force. / Ph. D.
109

Hydrophobic Hydration of a Single Polymer

Li, Isaac Tian Shi 17 December 2012 (has links)
Hydrophobic interactions guide important molecular self-assembly processes such as protein folding. On the macroscale, hydrophobic interactions consist of the aggregation of "oil-like" objects in water by minimizing the interfacial energy. However, the hydration mechanism of small hydrophobic molecules on the nanoscale (~1 nm) differs fundamentally from its macroscopic counterpart. Theoretical studies over the last two decades have pointed to an intricate dependence of molecular hydration mechanisms on the length scale. The microscopic-to-macroscopic cross-over length scale is critically important to hydrophobic interactions in polymers, proteins and other macromolecules. Accurate experimental determination of hydration mechanisms and their interaction strengths are needed to understand protein folding. This thesis reports the development of experimental and analytical techniques that allow for direct measurements of hydrophobic interactions in a single molecule. Using single molecule force spectroscopy, the mechanical unfolding of a single hydrophobic homopolymer was identified and modeled. Two experiments examined how hydrophobicity at the molecular scale differ from the macroscopic scale. The first experiment identifies macroscopic interfacial tension as a critical parameter governing the molecular hydrophobic hydration strength. This experiment shows that the solvent conditions affect the microscopic and macroscopic hydrophobic strengths in similar ways, consistent with theoretical predictions. The second experiment probes the hydrophobic size effect by studying how the size of a non-polar side-chain affects the thermal signatures of hydration. Our experimental results reveal a cross-over length scale of approximately 1 nm that bridges the transition from entropically driven microscopic hydration mechanism to enthalpically driven macroscopic hydration mechanism. These results indicate that hydrophobic interactions at the molecular scale differ from macroscopic scale, pointing to potential ways to improve our understanding and predictions of molecular interactions. The system established in this thesis forms the foundation for further investigation of polymer hydrophobicity.
110

Hydrophobic Hydration of a Single Polymer

Li, Isaac Tian Shi 17 December 2012 (has links)
Hydrophobic interactions guide important molecular self-assembly processes such as protein folding. On the macroscale, hydrophobic interactions consist of the aggregation of "oil-like" objects in water by minimizing the interfacial energy. However, the hydration mechanism of small hydrophobic molecules on the nanoscale (~1 nm) differs fundamentally from its macroscopic counterpart. Theoretical studies over the last two decades have pointed to an intricate dependence of molecular hydration mechanisms on the length scale. The microscopic-to-macroscopic cross-over length scale is critically important to hydrophobic interactions in polymers, proteins and other macromolecules. Accurate experimental determination of hydration mechanisms and their interaction strengths are needed to understand protein folding. This thesis reports the development of experimental and analytical techniques that allow for direct measurements of hydrophobic interactions in a single molecule. Using single molecule force spectroscopy, the mechanical unfolding of a single hydrophobic homopolymer was identified and modeled. Two experiments examined how hydrophobicity at the molecular scale differ from the macroscopic scale. The first experiment identifies macroscopic interfacial tension as a critical parameter governing the molecular hydrophobic hydration strength. This experiment shows that the solvent conditions affect the microscopic and macroscopic hydrophobic strengths in similar ways, consistent with theoretical predictions. The second experiment probes the hydrophobic size effect by studying how the size of a non-polar side-chain affects the thermal signatures of hydration. Our experimental results reveal a cross-over length scale of approximately 1 nm that bridges the transition from entropically driven microscopic hydration mechanism to enthalpically driven macroscopic hydration mechanism. These results indicate that hydrophobic interactions at the molecular scale differ from macroscopic scale, pointing to potential ways to improve our understanding and predictions of molecular interactions. The system established in this thesis forms the foundation for further investigation of polymer hydrophobicity.

Page generated in 0.054 seconds