1 |
Couplage d'un contacteur membranaire à extraction liquide-liquide avec un biorécteur pour la production de molécules hydrophobes par voie biotechnologiqueRossignol, Cindie 23 May 2013 (has links)
Le travail présenté porte sur le couplage d’un procédé membranaire à extraction liquide-liquide avec un bioréacteur impliquant des molécules hydrophobes. La bioconversion modèle utilisée est la production de cis-2-methyl-5-isopropylhexa-2,5-dienal (isonovalal) à partir d’α-pinène oxyde, instable en phase aqueuse, par des cellules entières perméabilisées de Pseudomonas rhodesiae (CIP 107491). La production d’isonovalal en milieu biphasique eau (tampon phosphate)/hexadécane présente des verrous technologiques importants, dont une inactivation de l'enzyme à l'interface eau-solvant organique ainsi que l'apparition d'une émulsion stable. L’intérêt de la membrane porte sur l'absence de formation d'émulsion et sur l’augmentation de la durée de vie du biocatalyseur en raison de l'absence de contact direct du biocatalyseur avec l'interface liquide-liquide. La nature de la membrane a été choisie à partir de l'analyse des propriétés physico-chimiques du matériau et de l’étude des affinités entre membrane et composés d’intérêt (solutés, solvants). Il a été montré que les conditions d'écoulement au voisinage de la membrane, notamment du côté aqueux, jouent un rôle prépondérant sur les vitesses de transfert. Ce résultat souligne l'importance du design et des conditions d'opération du module membranaire sur les capacités de transfert. Le couplage de l’extraction membranaire liquide-liquide et de la réaction biologique a conduit à la mise en place d’un système bi-membranaire. Le prototype développé a permis de doubler les capacités catalytiques (+ 100 % d’isonovalal par gramme de biomasse) ainsi que de la durée de vie du biocatalyseur (160 h contre 80 h) par rapport à la même bioconversion réalisée en système biphasique conventionnel. / The study deals with the combination of a membrane process based on liquid/liquid extraction with a bioreactor producing hydrophobic molecules. The bioconversion used is the production of cis-2-methyl-5-isopropylhexa-2,5-dienal (isonovalal) from α-pinene oxide (unstable in aqueous phase) by whole cells of Pseudomonas rhodesiae (CIP 107491). The production of isonovalal in two-phase medium water/organic is known about but presents important technological brakes. Membrane interest concerns the stabilization of liquid/liquid interface and capacity to increase the biocatalyst life-time. Membrane nature is chosen from the analysis of physical and chemical properties of membrane material and study of the affinities between membrane and interest compounds (solutes, solvents). Two membrane contactors are designed and implemented on laboratory scale to study transfers between liquid phases. It is shown that the hydrodynamic conditions in the membrane neighborhood, in particular on aqueous side, play a major role on transfer speeds. This result underlines the importance of design and operation conditions in membrane module about the transfer capacities. The combination of liquid/liquid membrane extraction and biological reaction with unstable substrate had been studied and lead to the implementation of a serial bi-membrane system. The developed prototype, equipped with a PTFE membrane (polytetrafluoroethylene) with 0.22 μm pores’ diameter, highlights a doubling of catalytic capacities (+ 100 % of isonovalal per gram of biomass) as well as biocatalyst life-time (160 hours against 80 hours) compared with the same bioconversion realized in conventional two-phase medium system.
|
2 |
Wood cell wall modification with hydrophobic moleculesErmeydan, Mahmut Ali January 2014 (has links)
Wood is used for many applications because of its excellent mechanical properties, relative abundance and as it is a renewable resource. However, its wider utilization as an engineering material is limited because it swells and shrinks upon moisture changes and is susceptible to degradation by microorganisms and/or insects. Chemical modifications of wood have been shown to improve dimensional stability, water repellence and/or durability, thus increasing potential service-life of wood materials. However current treatments are limited because it is difficult to introduce and fix such modifications deep inside the tissue and cell wall. Within the scope of this thesis, novel chemical modification methods of wood cell walls were developed to improve both dimensional stability and water repellence of wood material. These methods were partly inspired by the heartwood formation in living trees, a process, that for some species results in an insertion of hydrophobic chemical substances into the cell walls of already dead wood cells,
In the first part of this thesis a chemistry to modify wood cell walls was used, which was inspired by the natural process of heartwood formation. Commercially available hydrophobic flavonoid molecules were effectively inserted in the cell walls of spruce, a softwood species with low natural durability, after a tosylation treatment to obtain “artificial heartwood”. Flavonoid inserted cell walls show a reduced moisture absorption, resulting in better dimensional stability, water repellency and increased hardness. This approach was quite different compared to established modifications which mainly address hydroxyl groups of cell wall polymers with hydrophilic substances. In the second part of the work in-situ styrene polymerization inside the tosylated cell walls was studied. It is known that there is a weak adhesion between hydrophobic polymers and hydrophilic cell wall components. The hydrophobic styrene monomers were inserted into the tosylated wood cell walls for further polymerization to form polystyrene in the cell walls, which increased the dimensional stability of the bulk wood material and reduced water uptake of the cell walls considerably when compared to controls. In the third part of the work, grafting of another hydrophobic and also biodegradable polymer, poly(ɛ-caprolactone) in the wood cell walls by ring opening polymerization of ɛ-caprolactone was studied at mild temperatures. Results indicated that
polycaprolactone attached into the cell walls, caused permanent swelling of the cell walls up to 5%. Dimensional stability of the bulk wood material increased 40% and water absorption reduced more than 35%. A fully biodegradable and hydrophobized wood material was obtained with this method which reduces disposal problem of the modified wood materials and has improved properties to extend the material’s service-life.
Starting from a bio-inspired approach which showed great promise as an alternative to standard cell wall modifications we showed the possibility of inserting hydrophobic molecules in the cell walls and supported this fact with in-situ styrene and ɛ-caprolactone polymerization into the cell walls. It was shown in this thesis that despite the extensive knowledge and long history of using wood as a material there is still room for novel chemical modifications which could have a high impact on improving wood properties. / Der nachwachsende Rohstoff Holz wird aufgrund seiner guten mechanischen Eigenschaften und der leichten Verfügbarkeit für viele Anwendungszwecke genutzt. Quellen und Schrumpfen bei Feuchtigkeitsänderungen des hygroskopischen Werkstoffs Holz limitieren jedoch die Einsatzmöglichkeiten. Ein weiteres Problem stellt der mitunter leichte Abbau – u.a. bei feuchtem Holz - durch Mikroorganismen und/oder Insekten dar. Durch chemische Modifizierungen können die Dimensionsstabilität, die Hydrophobizität und die Dauerhaftigkeit verbessert und damit die potentielle Lebensdauer des Werkstoffes erhöht werden. Dabei ist die dauerhafte Modifikation der Zellwand nur äußerst schwer realisierbar. Inspiriert von der Kernholzbildung in lebenden Bäumen, ein zellwandverändernder Prozess, der Jahre nach der Holzbildung erfolgt, wurden im Rahmen dieser Arbeit neue Ansätze zur chemischen Modifizierung der Zellwände entwickelt, um die Dimensionsstabilität und Hydrophobizität zu erhöhen.
Der erste Teil der Arbeit ist stark vom Prozess der Kernholzbildung inspiriert, eine abgeleitete Chemie wurde verwendet, um die Zellwände von Fichte, einem Nadelholz von geringer natürlicher Dauerhaftigkeit, zu modifizieren. Kommerziell verfügbare hydrophobe Flavonoide wurden nach einem Tosylierungsschritt erfolgreich in die Zellwand eingebracht, um so „artifizielles Kernholz“ zu erzeugen. Die modifizierten Holzproben zeigten eine verringerte Wasseraufnahme, die zu erhöhter Dimensionsstabilität und Härte führte. Dieser Ansatz unterscheidet sich grundlegend von bereits etablierten Modifikationen, die hauptsächlich hypdrophile Substanzen an die Hydroxylgruppen der Zellwand anlagern. Der zweite Teil der Arbeit beschäftigt sich mit der Polymerisation von Styren in tosylierten Zellwänden. Es ist bekannt, dass es nur eine schwache Adhäsion zwischen den hydrophoben Polymeren und den hydrophilen Zellwandkomponenten gibt. Die hydrophoben Styren-Monomere wurden in die tosylierte Zellwand eingebracht und zu Polystyren polymerisiert. Wie bei der Modifikation mit Flavonoiden konnte eine erhöhte Dimensionsstabilität und reduzierte Wasseraufnahme der Zellwände beobachtet werden. Im dritten Teil der Arbeit wurde das biologisch abbaubare, hydrophobe poly(ɛ-caprolacton) in der Zellwand aufpolymerisiert. Die Ergebnisse deuten darauf hin, dass Polycaprolacton in der Zellwand gebunden ist und zu einer permanenten Quellung führt (bis zu 5 %). Die Dimensionsstabilität nahm um 40 % zu und die Wasseraufnahmerate konnte um mehr als 35 % reduziert werden. Mit dieser Methode kann nicht nur dimensionsstabileres Holz realisiert werden, auch biologische Abbaubarkeit und damit eine einfache Entsorgung sind gewährleistest.
|
3 |
Nativní hyaluronan jako nosič hydrofobních molekul / Native hyaluronan as delivery agent for hydrophobic moleculesMichalicová, Petra January 2013 (has links)
Hyaluronan is a chemical, which can be qualified as essential for vertebrates. It is a part of the extracellular matrix in most of tissues and also a major component of some other tissues. Besides of the mechanical functions this compound is important for many biological processes such as growth of tumor cells. The objective of this thesis was development of carrier systems containing native hyaluronan and hydrophobic drugs. For purposes of this work fluorescence probes (pyrene, prodan, perylene, DPH, mereocynine 540) instead of drugs were used. By using further mentioned sophisticated methods the properties of these systems were studied. The systems were prepared by freeze-drying. The effect of freeze-drying on support of interactions was observed by fluorescence spectrometry (steady-state and time-resolved). The stability of freeze-dried systems was determined by zeta potential, which was measured by electrophoretic light scattering. Cakes obtained by freeze-drying were analyzed by several methods. First one was effluence gas chromatography connected with FT-IR spectrometry. In this method the present of tertiary butyl alcohol in product was observed. The cakes were also analyzed by scanning electron microscopy, which can provide the information about the surface and elemental constitution of the material. The results of this work can shed light on the area of developing of drugs with targeted distribution of active compound.
|
Page generated in 0.0642 seconds