• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 10
  • 6
  • Tagged with
  • 67
  • 67
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

A QUANTITATIVE ANALYSIS OF HYDROTHERMAL CIRCULATION AROUND MID-OCEAN RIDGE MAGMA CHAMBERS.

BRIKOWSKI, TOM HARRY. January 1987 (has links)
Hydrothermal activity is one of the dominant processes affecting the chemical and thermal evolution of oceanic crust at the mid-ocean ridge (MOR), but little is known about the sub-surface portions of ridge hydrothermal systems. These systems can be investigated using numerical modeling techniques, and models of two-dimensional cross-sections are utilized in this study to investigate the behavior of MOR hydrothermal systems. The influence of magma chamber geometry is explored by modeling two extremes of proposed geometry. Seismological evidence supports a dike-like 2 km half-width chamber, and models of this chamber indicate that: (1) complete crystallization of the magma requires 30,000 years, (2) hydrothermal upflow and hot springs are concentrated in a narrow band within 1.5 km of the ridge axis for the lifetime of the system, (3) a large hydrothermal cell forms and remains centered above the distal tip of the intrusion for the lifetime of the system, (4) effective hydrothermal activity ends by 70,000 yrs. Petrological evidence supports a wide sill-like chamber 15 km in half-width, and models of this chamber indicate that: (1) complete crystallization of the magma requires 100,000 yrs, (2) hydrothermal vents are present at the ridge axis, but most of the vents are located 5-10 km away from the axis, (3) a large hydrothermal cell develops at the distal tip of the magma chamber, while a series of small but vigorous cells develops directly above the intrusion, both features migrate toward the ridge axis as the magma solidifies, (4) effective hydrothermal activity ends by 170,000 yrs. Substantially different hydrothermal systems develop around these two chamber geometries and comparison of the models shows this is because different patterns of near-critical P-T conditions developed around them. The fundamental influence on the nature and pattern of hydrothermal circulation at MOR is the distribution of near-critical conditions.
12

Linking bacterial symbiont physiology to the ecology of hydrothermal vent symbioses

Beinart, Roxanne Abra 25 February 2014 (has links)
Symbioses between prokaryotes and eukaryotes are ubiquitous in our biosphere, nevertheless, the effects of such associations on the partners' ecology and evolution are poorly understood. At hydrothermal vents, dominant invertebrate species typically host bacterial symbionts, which use chemical energy to fix carbon to nourish their hosts and themselves. In this dissertation, I present evidence that symbiont metabolism plays a substantive, if not major, role in habitat use by vent symbioses. A study of nearly 300 individuals of the symbiotic snail Alviniconcha sp. showed specificity between three host species and three specific symbiont phylotypes, as well as a novel lineage of Oceanospirillales. Additionally, this study revealed a structured distribution of each Alviniconcha-symbiont combination across ~300 km of hydrothermal vents that exhibited a gradient in geochemical composition, which is consistent with the physiological tendencies of the specific symbiont phylotypes. I also present a comparison of the in situ gene expression of the symbionts of Alviniconcha across that same geochemical gradient, which further implicates symbiont energy and nitrogen metabolism in governing the habitat partitioning of Alviniconcha. Finally, I present data that allies productivity and sulfur metabolism in three coexisting vent symbioses, demonstrating specific interaction with the environment. Three symbioses, namely the snails Alviniconcha and Ifremeria, and the mussel Bathymodiolus, are found around vents with differing concentrations of sulfide, thiosulfate and polysulfide. Using high-pressure, flow-through incubations and stable isotopic tracers, I quantified symbiont productivity via sulfide and thiosulfate oxidation, and provided the first demonstration of thiosulfate-dependent autotrophy in intact hydrothermal vent symbioses. I further demonstrated that vent symbioses can excrete thiosulfate and/or polysulfides, implicating them in substantively influencing the sulfur chemistry of their habitats. In summary, this dissertation demonstrates the importance of symbiont physiology to the ecology of prokaryote-eukaryote symbioses by revealing that symbiont activity may be critically important to the distribution of symbioses among specific niches, as well as can alter the geochemical environment through uptake and excretion of chemicals.
13

The influence of silica precipitation and thermoelastic stresses on the evolution of a ridge crest seafloor hydrothermal system

Martin, Jeffrey T. 12 1900 (has links)
No description available.
14

Hydrothermal activity along the northern Mid-Atlantic Ridge and in the Bransfield Strait backarc basin, Antarctica

Chin, Carol Sue 10 August 1998 (has links)
Graduation date: 1999
15

Geochemical and petrogenetic effect of the interaction of the Southeast Indian Ridge and the Amsterdam-Saint Paul hotspot

Priebe, Louise M. Douglas 03 March 1998 (has links)
Graduation date: 1998
16

Thermal convection in open-top porous media at high Rayleigh numbers /

Cherkaoui-Manaoui, Abdellah S. M. January 1999 (has links)
Thesis (Ph. D.)--University of Washington, 1999. / Vita. Includes bibliographical references (leaves 98-114).
17

Distribution of zooplankton and nekton above hydrothermal vents on the Juan de Fuca and Explorer ridges

Skebo, Kristina Michelle. 10 April 2008 (has links)
No description available.
18

Diffuse, low-temperature hydrothermal deposits on the Juan de Fuca ridge and plate

Channing, Catherine Erma. 10 April 2008 (has links)
No description available.
19

From CO2 to Cell: Energetic Expense of Creating Biomass Using the Calvin-Benson-Bassham and Reductive Citric Acid Cycles Based on Genomic Data

Mangiapia, Mary Ann 24 June 2014 (has links)
Abstract The ubiquity of the Calvin-Benson-Bassham cycle (CBB) amongst autotrophic organisms suggests that it provides an advantage over a wide range of environmental conditions. However, in some habitats, such as hydrothermal vents, the reductive citric acid cycle (rCAC) is an equally predominant carbon fixation pathway. It has been suggested that the CBB cycle poses a disadvantage under certain circumstances due to being more energetically demanding compared to other carbon fixation pathways. The purpose of this study was to compare the relative metabolic cost of cell biosynthesis by an autotrophic cell using either the CBB cycle or the rCAC. For both pathways, the energy, in ATP, required to synthesize the macromolecules (DNA, RNA, protein, and cell envelope) for one gram of biomass was calculated, beginning with CO2. Two sulfur-oxidizing chemolithoautotrophic proteobacteria, Thiomicrospira crunogena XCL-2, and Sulfurimonas autotrophica were used to model the CBB cycle and rCAC, respectively while Escherichia coli was used to model both pathways because it has had its cell composition extremely well-characterized. Since these organisms have had their genomes sequenced, it was possible to reconstruct the biochemical pathways necessary for intermediate and macromolecule synthesis. Prior estimates, based solely on the ATP cost of pyruvate biosynthesis, suggested that the cellular energetic expense for biosynthesis from the CBB cycle was more than that from the rCAC. The results of this study support this conclusion; however the difference in expense between the two pathways may not be as extreme as suggested by pyruvate synthesis. Other factors, such as oxygen sensitivity, may act in concert with energetic expense in contributing to the selective advantages between different autotrophic carbon fixation pathways.
20

Heat transfer from a convecting crystallizing, replenished magmatic sill and its link to seafloor hydrothermal heat output

Liu, Lei 15 November 2010 (has links)
Hydrothermal systems at oceanic spreading centers play an important role in the composition of seawater, the formation of ore deposits, the support of microbial and macrofaunal ecosystems, and even for the development of life on early earth. These circulation systems are driven by heat transport from the underlying magma chamber, where latent heat of crystallization and sensible heat from cooling are transferred by vigorous, high Rayleigh number convection through a thin conductive boundary layer. The traditional study of magmatic-hydrothermal systems is primarily based on the time-series observation, which takes the form of repeat visits, continuous offline monitoring by autonomous instruments, or continuous online monitoring by instruments with satellite or cable links to shore. Although a number of studies have deployed autonomous monitoring instruments at vents and around mid-ocean ridges to investigate geophysical and hydrothermal processes, the data are still rather limited and a comprehensive understanding of magma-hydrothermal processes at oceanic spreading centers is lacking. Numerical modeling needs to be employed to elucidate the dynamic behavior of magmatic hydrothermal systems and for testing completing hypotheses in these complex, data-poor environments. In this dissertation, I develop a mathematical framework for investigating heat transport from a vigorously convecting, crystallizing, cooling, and replenished magma chamber to an overlying hydrothermal system at an oceanic spreading center. The resulting equations are solved numerically using MATLAB. The simulations proceed step-by-step to investigate several different aspects of the system. First, I consider a hydrothermal system driven by convection, cooling and crystallization in a ~ 100 m thick basaltic magma sill representing an axial magma chamber (AMC) at an oceanic spreading center. I investigate two different crystallization scenarios, crystal-suspended and crystal-settling, and consider both un-replenished and replenished AMCs. In cases without magma replenishment, the simulation results for crystals-suspended models show that heat output and the hydrothermal temperature decrease rapidly and crystallinity reaches 60% in less than ten years. In crystals-settling models, magma convection may last for decades, but decreasing heat output and hydrothermal temperatures still occur on decadal timescales. When magma replenishment is included, the magmatic heat flux approaches steady state on decadal timescales, while the magma body grows to double its original size. The rate of magma replenishment needed ranges between 5 x 10⁵ and 5 x 10⁶ m³/yr, which is somewhat faster than required for seafloor spreading, but less than fluxes to some terrestrial and subseafloor volcanoes on similar timescales. The heat output from a convecting, crystallizing, replenished magma body that is needed to drive observed high-temperature hydrothermal systems is consistent, with gabbro glacier models of crustal production at mid-ocean ridges. Secondly, I study the heat transfer model from a parametric perspective and examine the effects of both initial magma chamber thickness and magma replenishment rate on the hydrothermal heat output. The initial rate of convective heat transfer is independent of the initial sill thickness; but without magma replenishment, the rate of decay of the heat output varies linearly with thickness, resulting in short convective lifetimes and decaying hydrothermal temperatures for sills up to ~ 100m thick. When magma replenishment is included in crystals settling scenarios at constant or exponentially decreasing rates of ~ 10⁻⁸ m/s to the base of the sill, growth of the sill results in stabilized heat output and hydrothermal temperature on decadal timescales and a relatively constant to increasing thickness of the liquid layer. Sills initially ~ 10 m thick can grow, in principal, to ~ 10 times their initial size with stable heat output and a final melt thickness less than 100m. Seismic data provides evidence of AMC thickness, but it can not discriminate whether it denotes initial magma thickness or is a result of replenishment. These results suggest that magma replenishment might not be seismically detectable on decadal time scales. Periodic replenishment may also result in quasi-stable heat output, but the magnitude of the heat output may vary considerably in crystals suspended models at low frequencies; compared to crystals settling models. In these models the direct coupling between magmatic and hydrothermal heat output suggests that heat output fluctuations might be recorded in hydrothermal vents; but if damping effects of the basal conductive boundary layer and the upflow zone are taken into account, it seems unlikely that heat output fluctuations on a time scale of years would be recorded in hydrothermal vent temperatures or heat output. Thirdly, I extend the work to the binary system motivated by the fact that the real magmas are multi-component fluids. I focus on the extensively studied binary system, diopside-anorthite (Di-An), and investigate the effects of convection of a two-component magma system on the hydrothermal circulation system through the dynamic modeling of both temperature and heat output. I model the melt temperature and viscosity as a function of Di concentration, and incorporate these relations in the modeling of the heat flux. Simulations comparing the effects of different initial Di concentrations indicate that magmas with higher initial Di concentrations convect more vigorously, which results in faster heat transfer, more rapid removal of Di from the melt and growth of crystals on the floor. With magma replenishment, I assume that the magma chamber grows either horizontally or vertically. In either case magma replenishment at a constant rate of ~ 10⁻⁸ m³/a can maintain relatively stable heat output of 10⁷-10⁹ Watts and reasonable hydrothermal vent temperatures for decades. The final stabilized heat flux increases with increasing Di content of the added magma. Periodic replenishment with a 10 year period results in temperature perturbations within the magma that also increase as a function of increasing Di. With the simple magma model used here, one can not discern conclusively whether the decrease in magma temperature between the 1991/1992 and the 2005/2006 eruptions at EPR 9°50'N involved replenishment with more or less evolved magmas. Fourthly, I investigate a high-silica magma chamber as the hydrothermal circulation driver. I construct viscosity models for andesite and dacite melts as a function of temperature and water content and incorporate these expressions into a numerical model of thermal convective heat transport from a high Rayleigh number, well-mixed, crystallizing and replenished magma sill beneath a hydrothermal circulation system. Simulations comparing the time dependent heat flux from basalt, 0.1wt.% andesite, 3wt.% andesite, and 4wt.% dacite, indicate that higher viscosity magmas convect less vigorously, which results not only in lower heat transport and hydrothermal vent temperatures, but also in a lower decay rate of the vent temperature. Though somewhat colder, hydrothermal systems driven by unreplenished high-silica melts tend to have a longer lifetime than those driven by basalts, assuming a heat output cutoff of 10⁷ Watts. As in the basaltic case, magma replenishment at a rate of ~ 3 x 10⁵ - 3 x 10⁶ m³/a can maintain relatively stable heat output of 10⁷-10⁹ Watts and hydrothermal vent temperatures for decades. Idealized models of porous flow through the lower crust suggest such replenishment rates are not likely to occur, especially for high-viscosity magmas such as andesite and dacite. Long term stability of hydrothermal systems driven by these magmas requires an alternate means of magma replenishment. Finally, the dissertation concludes by discussing some avenues for future work. Most important of these are to: (1) couple magma convection with more realistic hydrothermal models and (2) link magma chamber processes to better physical models of replenishment and eruption.

Page generated in 0.1064 seconds