• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 10
  • 6
  • Tagged with
  • 67
  • 67
  • 13
  • 12
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Physiological Investigations into Environmental Stress Response in the Hydrothermal Vent Polychaete Paralvinella sulfincola

Dilly, Geoffrey 28 February 2013 (has links)
The most universal abiotic influence is temperature, and thus, thermotolerance, adaptations and response to thermal variation, is a fundamental factor shaping evolution. Prokaryotic life may have an upper thermal limit near \(150^{\circ}C\); however, eukaryotic survival is limited to \(50^{\circ}C\) – the thermal maximum for sustained biosynthesis and homeostasis. My research focuses on understanding the physiological and biochemical factors that limit eukaryotic thermotolerance, by studying an organism near the upper limit of all eukaryotes: Paralvinella sulfincola. P. sulfincola, a hydrothermal vent polychaete, has the broadest known thermal range of any metazoan: \((5-48^{\circ}C)\). This species, along with the mesotolerant congener with Paralvinella palmiformis, is found at vents along the Juan de Fuca Ridge, Washington, USA. Making an ideal study system, both species are found in similar habitats, genetically comparable, and amenable to recovery and shipboard experimentation. Here, I present data from a series of high pressure in vivo experiments that investigate stress response to variations in temperature, pH, sulfide concentration, and duration. Field work was coupled with a suite of biomolecular techniques including pyrosequencing, comparative proteomics, enzyme assays, and quantitative PCR. From this research, the first to quantify global protein and antioxidant responses to temperature in an extremely thermotolerant eukaryote, three primary conclusions can be reached. 1) Pronounced thermal tolerance in P. sulfincola is likely enabled by its constitutive expression of heat shock proteins and limited by its ability to quickly and appropriately respond to the commensurate increase in oxidative stress. 2) Thermal tolerance limits are likely negatively affected by synergistic multistress effects. 3) Antioxidant gene expression response differs significantly between chronically and acutely stressed treatments, supporting the theory that oxidative stress is limiting in this system.
22

Linking Metabolic Rates with the Diversity and Functional Capacity of Endolithic Microbial Communities within Hydrothermal Vent Structures

Frank, Kiana Laieikawai 18 October 2013 (has links)
At hydrothermal vents, thermal and chemical gradients generated by the mixing of hydrothermal fluids with seawater provide diverse niches for prokaryotic communities. To date, our knowledge of environmental factors that shape bacterial and archaeal community composition and metabolic activities across these gradients within the active sulfide structures is limited. While many studies have laid the foundation for our understanding of the extent of diversity in relation to varying hydrothermal settings, few studies exists regarding the detailed spatial relationships between vent geochemistry and the abundance, distribution, and metabolic characteristics of the endolithic hosted communities. Even fewer data have been generated on the magnitude of metabolic rates and factors controlling the kinetics of these reactions have not been well constrained.
23

Laboratory evaluation of laser-induced breakdown spectroscopy (LIBS) as a new in situ chemical sensing technique for the deep ocean

Michel, Anna Pauline Miranda. January 2007 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2007. / Title from Web page (viewed on Mar. 24, 2008). "September 2007." Includes bibliographical references.
24

Watching the world sweat : development and utilization of an in-situ conductivity sensor for monitoring chloride dynamics in high temperature hydrothermal fluids at divergent plate boundaries /

Larson, Benjamin Isaac. January 2008 (has links)
Thesis (Ph. D.)--University of Washington, 2008. / Vita. Includes bibliographical references (leaves 131-141).
25

Design specifications of an incoherent pulsed doppler sonar instrument for monitoring hydrothermal vent characteristics

Comeau, William Joseph. January 1990 (has links)
Thesis (M.S.)--University of California, San Diego, 1990. / Includes bibliographical references (leaves 71-72).
26

Verification of numerical models for hydrothermal plume water through field measurements at TAG /

Wicher, Sacha. January 1900 (has links)
Thesis (M.S.)--Joint Program in Oceanography/ Applied Ocean Science and Engineering, Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 2005. / Bibliography: p.63-65.
27

Biological sulfur reactions and the influence on fluid flow at mid-ocean ridge hydrothermal systems

Crowell, Brendan William. January 2007 (has links)
Thesis (M. S.)--Earth and Atmospheric Sciences, Georgia Institute of Technology, 2008. / Lowell, Robert, Committee Chair ; Newman, Andrew, Committee Member ; Peng, Zhigang, Committee Member.
28

Community ecology of hydrothermal vents at Axial Volcano, Juan de Fuca Ridge, northeast Pacific

Marcus, Jean 20 November 2018 (has links)
Hydrothermal vents are deep-sea hot springs. Vents are home to luxuriant assemblages of animals that colonize the warm venting fluids. High biomass is fed by microbes that use hydrogen sulphide and other reduced chemicals in the vent fluid as an energy source to fix inorganic carbon. Individual vents may persist for a few years to several decades. The specialized animals must find new vents, cope with changing fluid conditions and foster their offspring. The composition and structure of vent communities vary in space and time. My research at Axial Volcano, a seamount on the Juan de Fuca Ridge (JdFR) in the northeast Pacific, aims to find pattern in this variation and to propose viable hypotheses of the mechanisms driving the patterns. Axial is an ideal location as it supports mature vent fields (venting for over 15 years) and young, developing vents initiated by a volcanic eruption in 1998. Thus, I was able to study both temporal and spatial variation in vent communities at the same site and relate patterns of developing assemblages to patterns observed at longer-lived vents. Pattern detection is the first critical step in any community ecology study as it justifies and focuses the search for process. I have refined existing statistical methods and developed novel techniques to test for pattern in vent species distributions and abundances. I modified an existing null model approach and showed that species distributions among sixteen vents differ from random in a long-lived (>15 years) vent field. I also developed a novel null model to confirm that initial patterns of community assembly seven months following the Axial eruption differ from random recruitment of species and individuals to new vents. My description of the community response to the Axial eruption is the first quantitative report of patterns of vent colonization and succession. My work documents that new vents are colonized quickly (within months) and that initial assemblages are variable. However, rapid community transitions and species replacements within the first few years cause new assemblages to resemble mature vents by 2.5 years post-eruption. Three habitat factors correlate with the development of nascent vent assemblages: the recruitment timing of the tubeworm Ridgeia piscesae post-eruption, vent age and vent fluid hydrogen sulphide content. I also describe a new polynoid polychaete discovered colonizing the new vents in high densities. My major contribution to vent community ecology is revealing species patterns through extensive sampling and rigorous statistical methods. These patterns are a necessary step towards understanding the processes that structure vent communities: they direct future research effort towards the key species and generate hypotheses to be experimentally tested. My work also elucidates how vent species respond to habitat destruction and creation, which is critical information for effectively managing Canada's only hydrothermal vent Marine Protected Area on the JdFR. / Graduate
29

Ecology of hydrothermal vents on three segments of the Juan de Fuca Ridge, northeast Pacific

Tsurumi, Maia 21 September 2018 (has links)
This work seeks to explore current ecological theory through application to communities inhabiting hydrothermal vents. This thesis aims to: (1) add to and synthesise knowledge of species and their distributions at the intra- and intersegment scale; and (2) evaluate vent community patterns and speculate on processes. Samples used are submersible grabs of low temperature (<60°C) tubeworm assemblages on basalt and sulphide surfaces. Species abundances and distributions on three segments of the Juan de Fuca Ridge (Axial, Cleft, and CoAxial) are described. Community descriptors such as species density, Simpson's and the Shannon-Wiener diversity indices, evenness, species richness, species abundance-distribution models, species percent-average relative abundance and density are used. Vent community structure is compared among segments using these descriptors, visual descriptions, pairwise correlations, Friedman tests of distributions, cluster and correspondence analysis, rarefaction, complementarity, a test for saturation, and Whittaker's beta diversity. Vent community composition on Axial, north Cleft, and CoAxial is similar at the segment and inter-segment scale. The limpet Lepetodrilus fucensis is the most abundant species at all sites. Differences among communities are best seen temporally, not spatially. Senescent communities can be distinguished from active vent assemblages. Pioneer communities, however, are statistically indistinguishable from intermediate communities when sampled two or more years post-eruption. Axial and Cleft species dispersion fits the core-satellite hypothesis. The exceptions are the polynoids Branchinotogluma sp., Lepidonotopodium piscesae, and Levensteiniella kincaidi, which are widespread and present in low local abundances. Both local and mesoscale regional mechanisms explain observed local diversity. Spatial isolation, not habitat differences, influences between-habitat diversity (beta diversity) on Axial, Cleft, and all three segments combined. Meiofauna are important for species richness estimates, identifying differences among structurally similar communities, and understanding input/output between vents and the deep-sea. Measurements such as species richness and diversity indices may be poor at distinguishing among vent communities because vents are species poor and uneven. The Michaelis-Menten, Jackknife 2, and Chao 2 nonparametric vent species richness estimators perform well with small samples. Vent communities should be compared to habitats of similar diversity and evenness as well as disturbance and productivity regimes. Candidate comparison communities include communities in early successional states, selected taxocenes such as carabid beetles on fungi, or high disturbance and/or low diversity systems like the rocky intertidal, organically polluted sediments and oxygen minimum zones below upwelling regions in the deep-sea. / Graduate
30

Critical properties of NaCI-H₂O Solutions

Knight, Cheryl L. Erickson 06 February 2013 (has links)
Critical properties of the NaCI-H₂0 fluid system are of fundamental interest to a variety of geochemical applications including fluid inclusion studies, numerical modeling of hydrothermal systems, and development of theoretical models for two·component fluid systems. Although many workers have expressed interest in NaCl·H₂0 fluid critical properties, most studies have been limited to small compositional ranges with little agreement among data sets at higher salinities. Critical densities are recorded in only one of these reports, and no studies have determined the locations of NaCl-H₂0 critical isochores (PT projections of critical densities). Furthermore, no studies to date have determined critical properties of NaCl·H₂0 solutions in excess of room temperature saturation (26.4 wt.% NaCl). / Master of Science

Page generated in 0.1021 seconds