Spelling suggestions: "subject:"hyperbolic plant"" "subject:"hyperbolic plans""
1 |
On Poicarés Uniformization TheoremBartolini, Gabriel January 2006 (has links)
<p>A compact Riemann surface can be realized as a quotient space $\mathcal{U}/\Gamma$, where $\mathcal{U}$ is the sphere $\Sigma$, the euclidian plane $\mathbb{C}$ or the hyperbolic plane $\mathcal{H}$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal{U}\rightarrow\mathcal{U}/\Gamma$.</p><p>For each $\Gamma$ acting on $\mathcal{H}$ we have a polygon $P$ such that $\mathcal{H}$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal{H}$ under $\Gamma$.</p>
|
2 |
On Poicarés Uniformization TheoremBartolini, Gabriel January 2006 (has links)
A compact Riemann surface can be realized as a quotient space $\mathcal/\Gamma$, where $\mathcal$ is the sphere $\Sigma$, the euclidian plane $\mathbb$ or the hyperbolic plane $\mathcal$ and $\Gamma$ is a discrete group of automorphisms. This induces a covering $p:\mathcal\rightarrow\mathcal/\Gamma$. For each $\Gamma$ acting on $\mathcal$ we have a polygon $P$ such that $\mathcal$ is tesselated by $P$ under the actions of the elements of $\Gamma$. On the other hand if $P$ is a hyperbolic polygon with a side pairing satisfying certain conditions, then the group $\Gamma$ generated by the side pairing is discrete and $P$ tesselates $\mathcal$ under $\Gamma$.
|
3 |
The Torus Does Not Have a Hyperbolic StructureButler, Joe R. 08 1900 (has links)
Several basic topics from Algebraic Topology, including fundamental group and universal covering space are shown. The hyperbolic plane is defined, including its metric and show what the "straight" lines are in the plane and what the isometries are on the plane. A hyperbolic surface is defined, and shows that the two hole torus is a hyperbolic surface, the hyperbolic plane is a universal cover for any hyperbolic surface, and the quotient space of the universal cover of a surface to the group of automorphisms on the covering space is equivalent to the original surface.
|
4 |
Ladrilhamentos irregulares, discos extremos e grafos de balão / Irregular tiling, extremes discs and graphs of balloonBatista, Frederico Ventura 28 February 2012 (has links)
Made available in DSpace on 2015-03-26T13:45:34Z (GMT). No. of bitstreams: 1
texto completo.pdf: 1893968 bytes, checksum: ce37a1814e775a74aa222b17583fdc19 (MD5)
Previous issue date: 2012-02-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation aims to study two topics related to modern topology and geometry. The first of these themes is dedicated to the study of packaging and record covering spheres in the hyperbolic plane, in which we treat the study results due to Bavard (1996) [3]. The second issue that was addressed refers to the study of edges pairing for irregular polygons. In this part we try to expose an example, created during our studies, for a pairing that generates a tiling of the hyperbolic plane by an irregular polygon. Also use the techniques developed by Mercio Botelho Faria, Catarina Mendes de Jesus and Panteleón D. R. Sanchez in [14] to obtain matching of edges of regular polygons through surgeries in surfaces associated with trivalent graphs. / Esta dissertação tem como objetivo o estudo de dois temas ligados a topologia e a geometria moderna. O primeiro destes temas é dedicado ao estudo de empacotamento e coberturas de discos do plano hiperbólico, no qual tratamos de estudar resultados devidos a Bavard (1996) [3]. Já o segundo tema que foi abordado se refere ao estudo de emparelhamento de arestas para polígonos irregulares. Nesta parte tratamos de expor um exemplo, criado durante nossos estudos, para um emparelhamento que gera um ladrilhamento do plano hiperbólico por um polígono irregular. Além disso utilizamos as técnicas desenvolvidas por Mercio Botelho Faria, Catarina Mendes de Jesus e Panteleón D. R. Sanchez em [14] para obtermos emparelhamentos de arestas de polígonos regulares por meio de cirurgias em superfícies associadas a grafos trivalentes.
|
5 |
Grupos Discretos no Plano HiperbólicoSilva, Carlos Antonio Guimarães 23 August 2013 (has links)
Made available in DSpace on 2015-05-15T11:46:15Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1316113 bytes, checksum: fa392778ab5ea3463805913d86fe571f (MD5)
Previous issue date: 2013-08-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Set a generalization of Möbius transformation and build a theory of inductive that
may be an n-dimensional hyperbolic space. This theory allows for the inductive starting
with n = 1, together with the extension notion of the Poincaré build a chain groups
GM(n) transformation Möbius and spaces hyperbolic H2 members.
We will see explicit formulas for the Poincaré bisectors in size 2. And may on models
of hiperbolic space ball these bisectors coincide with the isometric spheres of isometries.
We will be using explicit formulas of bissectors, to ge youself an algorithm, the DAFC,
to obtain generators for Fuchsianos groups, which will be our study group. / Definir uma generalização do conceito de transformação de Möbius e construir uma
teoria indutiva do que venha a ser um espaço hiperbólico de dimensão n. Essa teoria
indutiva nos permite que se iniciando com n = 1, juntamente com a noção de extensão
de Poincaré, construir uma cadeia de grupos GM(n) de transformação de Möbius e os
espaços hiperbólicos H2 associados.
Veremos fórmulas explícitas para os bissetores de Poincaré em dimensão 2. E que
nos modelos de bola do espaço hiperbólico, esses bissetores coincidem com as esferas
isométricas das isometrias.
Iremos usar fórmulas explícitas dos bissetores, para obter-se um algoritmo, o DAFC,
para obtenção de geradores para grupos Fuchsianos, que será nosso grupo em estudo.
|
6 |
Geometria hiperbólica : consistência do modelo de disco de PoincaréSOUZA, Carlos Bino de 26 August 2015 (has links)
Submitted by (lucia.rodrigues@ufrpe.br) on 2017-03-28T14:00:56Z
No. of bitstreams: 1
Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5) / Made available in DSpace on 2017-03-28T14:00:56Z (GMT). No. of bitstreams: 1
Carlos Bino de Souza.pdf: 2371603 bytes, checksum: d2f0bb2e430fc899161fe573fbae4e50 (MD5)
Previous issue date: 2015-08-26 / Euclid wrote a book in 13 volumes called Elements where systematized all the mathematical knowledge of his time. In this work, the 5 postulates of Euclidean geometry were presented. For several years, the 5th Postulate was frequently asked, this inquiries it was discovered that there are several other possible geometries, including hyperbolic geometry. Beltrimi proved that hyperbolic geometry is consistent if Euclidean geometry is consistent. Hilbert showed that Euclidean geometry is consistent if the arithmetic is consistent and presented an axiomatic system that capped the gaps in Euclid’s axiomatic system. Poincaré created a model, called the Poincaré disk, to represent the plan of hyperbolic geometry. The objective of this work is to show that the Poincaré disk model is consistent with reference Axioms Hilbert, replacing only the Axioms of Parallel to "On a point outside a line passes through the two parallel straight lines given", by constructions of Euclidean geometry. / Euclides escreveu uma obra em 13 volumes chamada de Elementos onde sistematizava todo o conhecimento matemático do seu tempo. Nesta obra, foram apresentados os 5 postulados da Geometria Euclidiana. Durante vários anos, o 5o Postulado foi muito questionado, desses questionamentos descobriu-se a existência de várias outras Geometrias possíveis, entre elas a Geometria Hiperbólica. Beltrimi provou que a Geometria Hiperbólica é consistente se a Geometria Euclidiana é consistente. Hilbert mostrou que a Geometria Euclidiana é consistente se a Aritmética é consistente e apresentou um sistema axiomático que preencheu as lacunas do sistema axiomático de Euclides. Poincaré criou um Modelo, chamado de Disco de Poincaré, para representar o plano da Geometria Hiperbólica. O objetivo deste trabalho é mostrar que o Modelo de Disco de poincaré é consistente, tomando como referência os Axiomas de Hilbert, substituindo apenas os Axiomas das Paralelas para "Por um ponto fora de uma reta passam duas retas paralelas à reta dada", através de construções da Geometria Euclidiana.
|
7 |
Modern Methods for Tree Graph Structures Rendering / Modern Methods for Tree Graph Structures RenderingZajíc, Jiří January 2013 (has links)
Tento projekt se věnuje problematice zobrazení velkých hierarchických struktur, zejména možnostem vizualizace stromových grafů. Cílem je implementace hyperbolického prohlížeče ve webovém prostředí, který využívá potenciálu neeukleidovské geometrie k promítnutí stromu na hyperbolickou rovinu. Velký důraz je kladen na uživatelsky přívětivou manipulaci se zobrazovaným modelem a snadnou orientaci.
|
Page generated in 0.0973 seconds