Spelling suggestions: "subject:"elliptic""
1 |
Ueber die Reduction der Integrale einer besonderen Classe von algebraischen Differentialen auf die hyperelliptischen IntegraleHettner, G. January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1877. / Vita.
|
2 |
On the reduction of the hyperelliptic integrals (p=3) to elliptic integrals by transformation of the second and third degreesGillespie, William, January 1900 (has links)
Thesis (Ph. D.)--University of Chicago, 1900. / Biography.
|
3 |
On the reduction of hyperelliptic functions (p=2) to elliptic functions by a transformation of the second degree ...Hutchinson, John Irwin, January 1897 (has links)
Thesis (Ph. D.)--University of Chicago. / Vita.
|
4 |
On the reduction of the hyperelliptic integrals (p=3) to elliptic integrals by transformation of the second and third degrees ...Gillespie, William, January 1900 (has links)
Thesis (Ph. D.)--University of Chicago, 1900. / Biography.
|
5 |
Eine Form des Additionstheorems für hyperelliptische Functionen erster OrdnungHancock, Harris, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1894. / Vita.
|
6 |
Über die Reduction hyperelliptischer Integrale erster Ordnung und erster Gattung auf elliptische, Insbesondere über die Reduction durch eine Transformation vierten Grades ...Bolza, O. January 1900 (has links)
Inaug.-Dis.--Göttingen. / Vita.
|
7 |
Pencils of quadrics and Jacobians of hyperelliptic curvesWang, Xiaoheng 08 October 2013 (has links)
Using pencils of quadrics, we study a construction of torsors of Jacobians of hyperelliptic curves twice of which is Pic^1. We then use this construction to study the arithmetic invariant theory of the actions of SO2n+1 and PSO2n+2 on self-adjoint operators and show how they facilitate in computing the average order of the 2-Selmer groups of Jacobians of hyperelliptic curves with a rational Weierstrass point, and the average order of the 2-Selmer groups of Jacobians of hyperelliptic curves with a rational non-Weierstrass point, over arbitrary number fields. / Mathematics
|
8 |
Nonexistence of Rational Points on Certain VarietiesNguyen, Dong Quan Ngoc January 2012 (has links)
In this thesis, we study the Hasse principle for curves and K3 surfaces. We give several sufficient conditions under which the Brauer-Manin obstruction is the only obstruction to the Hasse principle for curves and K3 surfaces. Using these sufficient conditions, we construct several infinite families of curves and K3 surfaces such that these families are counterexamples to the Hasse principle that are explained by the Brauer-Manin obstruction.
|
9 |
Comptage de points de courbes hyperelliptiques en grande caractéristique : algorithmes et complexité / Counting points on hyperelliptic curves in large characteristic : algorithms and complexityAbelard, Simon 07 September 2018 (has links)
Le comptage de points de courbes algébriques est une primitive essentielle en théorie des nombres, avec des applications en cryptographie, en géométrie arithmétique et pour les codes correcteurs. Dans cette thèse, nous nous intéressons plus particulièrement au cas de courbes hyperelliptiques définies sur des corps finis de grande caractéristique $p$. Dans ce cas de figure, les algorithmes dérivés de ceux de Schoof et Pila sont actuellement les plus adaptés car leur complexité est polynomiale en $\log p$. En revanche, la dépendance en le genre $g$ de la courbe est exponentielle et se fait cruellement sentir même pour $g=3$. Nos contributions consistent principalement à obtenir de nouvelles bornes pour la dépendance en $g$ de l'exposant de $\log p$. Dans le cas de courbes hyperelliptiques, de précédents travaux donnaient une borne quasi-quadratique que nous avons pu ramener à linéaire, et même constante dans le cas très particuliers de familles de courbes dites à multiplication réelle (RM). En genre $3$, nous avons proposé un algorithme inspiré de ceux de Schoof et de Gaudry-Harley-Schost dont la complexité, en général prohibitive, devient très raisonnable dans le cas de courbes RM. Nous avons ainsi pu réaliser des expériences pratiques et compter les points d'une courbe hyperelliptique de genre $3$ pour un $p$ de 64 bits / Counting points on algebraic curves has drawn a lot of attention due to its many applications from number theory and arithmetic geometry to cryptography and coding theory. In this thesis, we focus on counting points on hyperelliptic curves over finite fields of large characteristic $p$. In this setting, the most suitable algorithms are currently those of Schoof and Pila, because their complexities are polynomial in $\log q$. However, their dependency in the genus $g$ of the curve is exponential, and this is already painful even in genus 3. Our contributions mainly consist of establishing new complexity bounds with a smaller dependency in $g$ of the exponent of $\log p$. For hyperelliptic curves, previous work showed that it was quasi-quadratic, and we reduced it to a linear dependency. Restricting to more special families of hyperelliptic curves with explicit real multiplication (RM), we obtained a constant bound for this exponent.In genus 3, we proposed an algorithm based on those of Schoof and Gaudry-Harley-Schost whose complexity is prohibitive in general, but turns out to be reasonable when the input curves have explicit RM. In this more favorable case, we were able to count points on a hyperelliptic curve defined over a 64-bit prime field
|
10 |
Computer Architectures for Cryptosystems Based on Hyperelliptic CurvesWollinger, Thomas Josef 04 May 2001 (has links)
Security issues play an important role in almost all modern communication and computer networks. As Internet applications continue to grow dramatically, security requirements have to be strengthened. Hyperelliptic curve cryptosystems (HECC) allow for shorter operands at the same level of security than other public-key cryptosystems, such as RSA or Diffie-Hellman. These shorter operands appear promising for many applications. Hyperelliptic curves are a generalization of elliptic curves and they can also be used for building discrete logarithm public-key schemes. A major part of this work is the development of computer architectures for the different algorithms needed for HECC. The architectures are developed for a reconfigurable platform based on Field Programmable Gate Arrays (FPGAs). FPGAs combine the flexibility of software solutions with the security of traditional hardware implementations. In particular, it is possible to easily change all algorithm parameters such as curve coefficients and underlying finite field. In this work we first summarized the theoretical background of hyperelliptic curve cryptosystems. In order to realize the operation addition and doubling on the Jacobian, we developed architectures for the composition and reduction step. These in turn are based on architectures for arithmetic in the underlying field and for arithmetic in the polynomial ring. The architectures are described in VHDL (VHSIC Hardware Description Language) and the code was functionally verified. Some of the arithmetic modules were also synthesized. We provide estimates for the clock cycle count for a group operation in the Jacobian. The system targeted was HECC of genus four over GF(2^41).
|
Page generated in 0.0584 seconds