• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 89
  • 11
  • 10
  • 7
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 257
  • 125
  • 81
  • 49
  • 40
  • 32
  • 30
  • 26
  • 24
  • 20
  • 19
  • 18
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Effects of Acute and Chronic Hypoxia on Respiratory Physiology of Paddlefish (Polyodon Spathula)

Aboagye, Daniel Larbi 09 May 2015 (has links)
Among the basal bony fishes, the American paddlefish (Polyodon spathula) has a unique respiratory strategy of ram-ventilation. However, despite the increasing problems caused by hypoxia in natural habitats occupied by this species, little information exists about their response to hypoxia. Four studies were conducted to examine the physiological and biochemical responses of juvenile paddlefish (150-181 g) to acute and chronic hypoxia. Acute hypoxia tolerance, aerobic metabolic rates and swimming capabilities of paddlefish in an intermittent respirometer or swim flume were evaluated under normoxic (partial pressures of oxygen [pO2] =140 mm Hg) and hypoxic (pO2 =62 mm Hg) conditions at 18 °C and 26 °C. Additionally, blood oxygen transport, blood acid-base balance and metabolic stress were evaluated in paddlefish independently exposed to 4 different pO2s: normoxia =148 mm Hg, mild hypoxia =89 mm Hg, moderate hypoxia =59 mm Hg and extreme hypoxia =36 mm Hg, at 21°C. Blood samples were collected from paddlefish after they had been exposed to treatment pO2’s for 0.25, 2, 6, 24 and 72 hours, and analyzed for hematocrit, pO2, total oxygen content, pCO2, pH, hemoglobin, Na+, K+, Ca2+, Cl-, glucose, lactate, etc. A third study used 1-D and 2-D J-resolved 1H NMR to analyze metabolite changes in muscle tissue of paddlefish exposed to normoxia (148 mm Hg), or acute (0.25 h) or chronic (72 h) moderate hypoxia (59 mm Hg). The last study examined the effect of moderate hypoxia (pO2: 59 mm Hg) and subsequent recovery in normoxia (pO2: 148 mm Hg) on plasma cortisol, blood oxygen transport, blood acid-base balance, metabolic, ion-osmoregulation and enzyme parameters in paddlefish. The results indicate that paddlefish have a critical pO2 of 74 mm Hg at 18 °C and 89 mm Hg at 26 °C and a lethal oxygen threshold of ~2 mg/ L. Sensitive to moderate hypoxia, death occured after 3-8 hours of extreme hypoxia. Paddlefish have reduced capacity for metabolic depression and, as a result, survival in hypoxia is limited due to a reduction in both aerobic and anaerobic (glycogen and glucose) energy stores as well as the accumulations of toxic H+ and lactate. Nonetheless recovery is possible.
42

Towards Better Diabetes Therapeutics: Designing a More Stable Insulin Analog

Sambou Oumarou, Oumoul Ghaniyya Faiza 03 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Insulin is a hormone that plays a central role in the regulation of human metabolism, and as a drug, is used in the treatment of diabetes mellitus. Hyperglycemia characterizes this condition due to a range of reasons from impaired insulin production by pancreatic beta cells to abnormalities resulting in resistance to insulin action. Depending on time and mechanism of action, the main types of insulin analogs are basal and prandial. Basal insulin analogs are slow-acting insulins that maintain a continuous basal level of insulin in the bloodstream. Prandial insulin analogs are fast-acting and their therapeutic goal is to avoid immediate and late post-prandial hyperglycemia. Most analogs face the problem of chemical degradation and amyloid-like fibril formation (fibrillation) in delivery devices. Thus, many modifications have been made to insulin in the effort to make it more stable and faster-acting. This thesis aims to study the effects of modifications that could be used to design an insulin analog with improved chemical and physical properties, while maintaining biological activity. We studied six amino-acid substitutions to native human insulin in different combinations: desB1 , AB2 , EB3, EA8 , EA14, and EB29. Analogs of the protein were chemically synthesized. Then, fibrillation and circular dichroism assays were performed using purified proteins. The results suggested that EB3 and EA14 are stabilizing modifications that prevent fibril formation, whereas EA8 and EA14 increase the structural stability of an analog. Our findings also suggested that certain modifications in isolation may not impact overall stability, but when combined with others, may show detectable effects, which is why EA8 and EA14 became the focus of further experiments. Cell-based activity assays indicated that all the analogs had similar biological activities. Future work will assess chemical degradation, solubility, amide proton exchange (as monitored by NMR), and mitogenicity.
43

High Sugar Consumption Results in Mammary Epithelial Hyperplasia and Adipocyte Hypertrophy in a Mouse Model of Hyperglycemia

Sharma, Puja 04 November 2020 (has links)
No description available.
44

Investigation into the Role of Glycogen Synthase Kinase-3 in Hyperglycemia-Induced Atherosclerosis

Bowes, Anna Jean-Joo January 2009 (has links)
<p> Diabetes mellitus is a major independent risk factor for cardiovascular disease and stroke. However, the molecular and cellular mechanisms by which diabetes contributes to the development of vascular disease are not fully understood. We have shown that conditions of hyperglycemia are associated with accumulation of intracellular glucosamine, a downstream metabolite of glucose. Our findings indicate that elevated levels of intracellular glucosamine can promote inflammation and lipid accumulation - the hallmark features of atherosclerosis - in vascular cells and HepG2 cells.</p> <p> Here I demonstrate that exposure of HepG2 cells to the branched chain fatty acid, valproic acid, increases cellular resistance to glucosamine-induced lipid accumulation and nuclear factor-KB activation. In vivo I show that hyperglycemic apolipoprotein E-deficient (ApoE-/-) mice fed a diet supplemented with 625 mg/kg valproic acid have significantly reduced lesion volumes relative to non-supplemented controls. Valproate supplementation has no apparent effect on the plasma levels of glucose, or lipids, nor does it affect the expression of ER chaperones. Significant reductions were observed in total hepatic lipids(> 50.4%) and hepatic glycogen synthase kinases (GSK)-3β activity (> 55.8%) in mice fed the valproate supplemented diet.</p> <p> In vitro I demonstrate that valproic acid directly inhibits GSK-3α/β. Also pretreatment with novel GSK-3 inhibitors protects primary mouse hepatocytes from glucosamine-induced unesterified cholesterol accumulation. I further establish the role of GSK-3 by showing that GSK-3-deficient mouse embryonic fibroblasts do not accumulate unesterified cholesterol after glucosamine treatment. Dietary supplementation with 2-ethylbutyric acid, a novel and potent GSK-3 inhibitor in vitro, did not reduce lesion development in hyperglycemic ApoE-/- mice and significantly increased atherosclerosis in normoglycemic mice. This may be a side effect attributed to multiple cellular pathways controlled by GSK-3 .</p> <p> In conclusion, I have identified a pathway involving glucosamine-induced cellular dysfunction that leads to accelerated hyperglycemia-associated atherosclerosis. This pathway involves GSK-3, which regulates glucosamine-induced unesterified cholesterol accumulation.</p> / Thesis / Doctor of Philosophy (PhD)
45

Carbohydrate Consumption, Insulin Dosing and Glucose Abnormalities in a Hospitalized Population

Hessling, Jennifer 03 August 2010 (has links)
No description available.
46

The interactive effects of toxaphene, toxaphene congeners, and hyperglycemia on cultured rat embryos /

Calciu, Cristina Dana. January 1997 (has links)
No description available.
47

Dietary manipulation causes childhood obesity-like characteristics in pigs

Fisher, Kimberly Denise 18 January 2012 (has links)
An animal model to study complications resulting from childhood obesity is lacking. Our objective was to develop a porcine model for studying mechanisms underlying diet-induced childhood obesity. Pre-pubertal female pigs, age 35 d, were fed a high-energy diet (HED; n = 12), containing tallow and refined sugars, or a control corn-based diet (n = 11) for 16 wk. Initially, HED pigs self-regulated energy intake similar to controls, but, by wk 5, consumed more (P < 0.001) energy per kg body weight. At wk 15 and 22, pigs were subjected to an oral glucose tolerance test (OGTT); blood glucose increased (P < 0.05) in control pigs and returned to baseline levels within 60 min. HED pigs were hyperglycemic at time 0, and blood glucose did not return to baseline (P = 0.01), even 3 h post-challenge. During OGTT, glucose area under the curve was higher and insulin area under the curve was lower in HED pigs compared to controls (P = 0.001). Pigs given 6 wk of dietary intervention, consuming a control diet, marginally improved glucose area under the curve and LDL-cholesterol although insulin area under the curve was unaffected. Chronic HED intake increased (P < 0.05) subcutaneous, intramuscular, and perirenal fat deposition, and induced hyperglycemia, hypoinsulinemia, and low-density lipoprotein hypercholesterolemia; however, a 6 wk dietary intervention partially recovered a normal physiology. These data suggest pre-pubertal pigs fed HED are a viable animal model for studying childhood obesity. / Master of Science
48

Polyunsaturated fatty acid synthesis and type 2 diabetes complications

Tripathy, Sasmita 27 July 2013 (has links)
Type 2 diabetes mellitus (T2DM) is a disease of multi-complications affecting more than 20 million US adults. Hyperglycemia is the classic clinical feature of diabetes, and uncontrolled hyperglycemia leads to deadly health complications. Thus, control of blood glucose represents a major goal for diabetics. Human and rodent studies revealed another clinical feature; diabetics have low tissue and plasma levels of polyunsaturated fatty acids (PUFAs), an effect often attributed by impaired endogenous PUFA synthesis. In this context, rodent studies have revealed a possible link between PUFA synthesis and high fat diet induced obesity and diabetes. These studies have shown that obese and diabetic mice have low hepatic expression and activity of fatty acid elongase-5 (Elovl5), a key enzyme involved in the PUFA synthesis pathway. Over-expression of Elovl5 in livers of chow fed C57BL/6J mice decreased fasting blood glucose and increased hepatic glycogen contents. Therefore, my hypothesis for the current work is that elevated hepatic Elovl5 activity or improved hepatic PUFA synthesis will improve systemic and hepatic carbohydrate metabolism in a mouse model of diet induced obesity and diabetes. Using a recombinant adenovirus approach, we over-expressed Elovl5 in livers of high fat diets (60% calories derived from fat as lard, Research Diets) induced obese-diabetic mice. Elevated hepatic Elovl5 activity increased hepatic and plasma C��������������� PUFA contents, reduced homeostatic model assessment for insulin resistance (HOMA-IR), improved glucose tolerance and lowered fasting blood glucose to euglycemic levels in obese-diabetic mice. The mechanism for insulin mimetic effect of Elovl5 on hepatic glucose metabolism was correlated with increased phosphorylation of Akt-S��������, FoxO1-S�������� and PP2Acat-Y��������, decreased nuclear content of FoxO1, and decreased expression of Pck1 and G6Pase; important enzymes involved in gluconeogenesis (GNG) and glucose production. Phospho-FoxO1 is excluded from nuclei, ubiquitinated and degraded by the proteasome. Loss of nuclear FoxO1, due to its increased phosphorylation, leads to the reduction in the expression of key genes involved in gluconeogenesis, i.e., Pck1 and G6Pase. Using obese-diabetic mice liver extracts and HepG2 cells, I established that Elovl5 uses two mechanisms to control hepatic GNG. The first mechanism involves Elovl5 mediated increased Akt2-S�������� and FoxO1-S�������� phosphorylation via mTORC2-rictor pathway. The second mechanism involves Elovl5 mediated attenuation of de-phosphorylation of FoxO1 via PP2A inhibition. Together, these mechanisms increase FoxO1 phosphorylation status in livers of fasted obese-diabetic mice, lower hepatic FoxO1 nuclear abundance and FoxO1 capacity to sustain transcription of GNG genes and inhibit GNG and restore blood glucose levels in fasted obese-diabetic mice. Results of these studies showed Elovl5 corrected high fat diet induced hyperglycemia in C57BL/6J mice, identified the molecular mechanism of Elovl5 control of GNG and explained how Elovl5 or PUFA synthesis controls GNG. Therefore, these findings will be eventually helpful in developing a therapeutic target to combat hyperglycemia. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from July 27, 2012 - July 27, 2013
49

Proteasome Inhibitors : a novel therapy that blunt hyperglycemia-induced cardiac contractile dysfunction

Adams, Buin 04 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Diabetes is considered a major threat to human health in both developed and developing nations. Cardiovascular disease which is common in diabetic patients has increased the overall disease affliction. Moreover, stress-induced hyperglycemia has led to increased mortality and morbidity in patients with an acute myocardial infarction (MI), whether the patient has diabetes or not. In addition, acute MI might stem from stress-induced hyperglycemia capability to increase inflammation and oxidative stress resulting in a worse functional cardiac outcome. Hyperglycemia-induced oxidative stress can similarly result in the formation of miss folded or damaged proteins that may be eliminated by the ubiquitin-proteasome system (UPS). Futhermore, hyperglycemia-induced oxidative stress can also result in dysregulation of the UPS that removes these misfolded proteins. Additionally, an increasing body of evidence implicates UPS dysfunction in cardiac diseases and hyperglycemia which has been associated with increased inflammation and blunted cardiac function in response to ischemia-reperfusion. Literature however is blurred whether a reduction or a rise in the UPS is damaging with hyperglycemia and in response to ischemia-reperfusion. In light of this, we hypothesized that UPS inhibitors such as Z-Leu-Leu-Leu-al (MG-132) and lactacystin, protects the rat heart against ischemia-reperfusion under hyperglycemic perfusion conditions. Isolated rat hearts were perfused ex vivo with Krebs-Henseleit buffer containing 33 mM glucose vs. controls (11 mM glucose) for 60 min, followed by 20 min global ischemia and 60 minutes reperfusion ± PI treatment (MG-132 and lactacystin), anti-inflammatory (Ibuprofen) and anti-oxidant (NAC). Infarct size was determined using Evans Blue dye and 1% 2,3,5-triphenyl tetrazolium chloride (TTC) staining with 20 minutes regional ischemia and 2 hours reperfusion ± PI’s treatments. Tissues were collected at the end of the global ischemia experiments and analyzed for UPS activity, oxidative stress, apoptosis and inflammation. Our data expressed a reduced cardiac contractile function in response to ischemia and reperfusion under hyperglycemic conditions as well as an increase in UPS activity. PI treatment resulted in cardio-protection for ex vivo rat heart model exposed to ischemia and reperfusion under hyperglycemic conditions as well as ibuprofen and NAC. In parallel lactacystin treatment significantly decreased myocardial oxidative stress, apoptosis, and inflammation which provided cardio-protection in response to ischemia and reperfusion under hyperglycemic conditions This study shows that acute hyperglycemia elicits myocardial oxidative stress, apoptosis and inflammation that in time results in an increase in contractile dysfunction following ischemia and reperfusion. However, we found that PI treatment with both MG-132 and lactacystin blunted high glucose-induced damaging effects which resulted in a robust cardio-protection in response to ischemia and reperfusion under hyperglycemic conditions, by reducing oxidative stress, decreasing apoptosis and limiting inflammation. A parallel outcome was observed at baseline although the underlying mechanisms driving this process still need to be clarified. Our findings indicate that the UPS may be a unique therapeutic target to treat ischemic heart disease in diabetic patients, and non-diabetic individuals that present with stress-induced hyperglycemia. In summary, this thesis established that PIs act as a novel cardio-protective intervention to treat acute hyperglycemia with associated cardiovascular complications. / AFRIKAANSE OPSOMMING: Diabeties word beskou as ‘n baie groot problem vir menslieke gesondhied vir biede die ontwikkel en onontwikkelende lande. Kardiovaskulêre siekte wat normaal met diabetiese pasiente geassoseerd word veroorsaak ‘n toeneemende druk, wat hierdie siekte laat toeneem. Verder meer vergroot stresgeïnduseerde hiperglukemie die mortaliteit van pasiente met of sonder diabeties wat akute miokardiale infarksie onder lede het. Akute miokardiale infarksie kan ook ontstaan van stresgeïnduseerde hiperglukemie se bekwaamheid om meer inflamasie en oksidante stress te veroorsaak wat in ‘n meer swakker funksionele kardiale toestand. Hiperglukemiegeïnduseerde oksidatiewe stres ook tot wanregulering van die ubikwitien-proteosoomsisteem (UPS) wat wangevoude protïene verwyder, aanleiding gee. Kontrasterende data bestaan van verhoogde/verlaagde UPS aktiwietiet, sowel as met hiperglukemie en/of in reaksie tot isgemie-reperfussie. As gewolg hiervan,, hipotetiseer ons dat Z-Leu-Leu-Leu-al (MG-132) and lactacystin as ‘n nuwe kardiobeskermingsmiddel kan optree deur miokardiale oksidatiewe stress, inflamasie en UPS aktiwiteit te verlaag in reaksie op isgemie-reperfussie tydens akute hiperglukemiese toestande kan verlaag. Geïsoleerde rotharte is ex vivo met Krebs-Henseleit buffer, wat, 33 mM glukose vs. kontrole (11 mM glukose) bevat, vir 60 min geperfuseer, daarna is dit deur 20 min globale isgemie gevolg en 60 min reperfussie ± PI behandeling (MG-132 and lactacystin), antiflammatoriese behandeling (Ibuprofen) en antioxidant behandeling (NAC). Infarkgrootte is bepaal deur Evans bou kleursel en 1% 2. 3-5 tripfeniel tetrazoloimcholierd (TTC) kleuring met 20 minute regionale ischemie, en 2 uur reprefussie ± PI’s behandeling. Weefsels is aan die einde van die globale isgemie eksperimente versamel, en vir oksidatewe stres, apoptose en inflammasie ontleed. Ons data toon aan dat kardiale kontraktiele funksie in reaksie op isgemie-reperfussie onder hiperglukemiese toestande verlaag het asook ‘n toename in UPS aktiwitiet veroorsaak. PI behandeling het gelei tot kardiale beskerming vir ex vivo rotharte wat aan isgemie-reperfussie onder hiperglukemiese toestande blootgestel was sowel as ibuprofen en NAC. Parallel hiermee het lactacystin oksidatiewe stres, apoptose, inflmasie, en UPS aktiwiteit na isgemie-reperfussie, verlaag in reaksie isgemie-reperfussie onder hiperglukemiese toestande. Hierdie studie het bevind dat akute hiperglukemie, miokardiale oksidatiewe stres lei tot oksidante stress, apoptose, en inflamasie na kontraktiele wanfunksionering na isgemie-reperfussie lei. Ons het bevind dat beide MG-132 en lactacystin behandeling, hoë glukose-geïnduseerde skadelike effekte onderdruk, en kardiale-beskerming in reaksie op isgemie-reperfussie onder hiperglukemiese toestande ondervind was deur oksidante stress, apoptose, en inflamasie te verlaag. ‘n Soorgelyke effek is tydens die basislyn waargeneem, alhoewel die onderliggende meganisme wat hierdie proses meer ondersoek instel. Ons bevinding dei dat die UPS ‘n nuwe behandeling teiken kan word in sgemie-geïnduseerde reperfussie onder aktute en chroniese hoë glukose toestande. In opsomming, het die tesis belowend bevindinge gevind wat ‘n nuwe terapeutiese intervensie vir die behandeling van akute hiperglukemie met geassosieërde kardiovaskulêre komplikasies gebruik kan word.
50

Genetic and environmental determinants of impaired glucose tolerance in Hong Kong: implications on health caremanagement

Wat, Ming-sun, Nelson., 屈銘伸. January 2006 (has links)
published_or_final_version / abstract / Medicine / Master / Doctor of Medicine

Page generated in 0.0431 seconds