Spelling suggestions: "subject:"hypernatremia""
1 |
Domain Adaptation for Hypernym Discovery via Automatic Collection of Domain-Specific Training Data / Domänanpassning för identifiering av hypernymer via automatisk insamling av domänspecifikt träningsdataPalm Myllylä, Johannes January 2019 (has links)
Identifying semantic relations in natural language text is an important component of many knowledge extraction systems. This thesis studies the task of hypernym discovery, i.e discovering terms that are related by the hypernymy (is-a) relation. Specifically, this thesis explores how state-of-the-art methods for hypernym discovery perform when applied in specific language domains. In recent times, state-of-the-art methods for hypernym discovery are mostly made up by supervised machine learning models that leverage distributional word representations such as word embeddings. These models require labeled training data in the form of term pairs that are known to be related by hypernymy. Such labeled training data is often not available when working with a specific language domain. This thesis presents experiments with an automatic training data collection algorithm. The algorithm leverages a pre-defined domain-specific vocabulary, and the lexical resource WordNet, to extract training pairs automatically. This thesis contributes by presenting experimental results when attempting to leverage such automatically collected domain-specific training data for the purpose of domain adaptation. Experiments are conducted in two different domains: One domain where there is a large amount of text data, and another domain where there is a much smaller amount of text data. Results show that the automatically collected training data has a positive impact on performance in both domains. The performance boost is most significant in the domain with a large amount of text data, with mean average precision increasing by up to 8 points.
|
2 |
Automatic taxonomy evaluationGao, Tianjian 12 1900 (has links)
This thesis would not be made possible without the generous support of IATA. / Les taxonomies sont une représentation essentielle des connaissances, jouant un rôle central dans de nombreuses applications riches en connaissances. Malgré cela, leur construction est laborieuse que ce soit manuellement ou automatiquement, et l'évaluation quantitative de taxonomies est un sujet négligé. Lorsque les chercheurs se concentrent sur la construction d'une taxonomie à partir de grands corpus non structurés, l'évaluation est faite souvent manuellement, ce qui implique des biais et se traduit souvent par une reproductibilité limitée. Les entreprises qui souhaitent améliorer leur taxonomie manquent souvent d'étalon ou de référence, une sorte de taxonomie bien optimisée pouvant service de référence.
Par conséquent, des connaissances et des efforts spécialisés sont nécessaires pour évaluer une taxonomie.
Dans ce travail, nous soutenons que l'évaluation d'une taxonomie effectuée automatiquement et de manière reproductible est aussi importante que la génération automatique de telles taxonomies. Nous proposons deux nouvelles méthodes d'évaluation qui produisent des scores moins biaisés: un modèle de classification de la taxonomie extraite d'un corpus étiqueté, et un modèle de langue non supervisé qui sert de source de connaissances pour évaluer les relations hyperonymiques. Nous constatons que nos substituts d'évaluation corrèlent avec les jugements humains et que les modèles de langue pourraient imiter les experts humains dans les tâches riches en connaissances. / Taxonomies are an essential knowledge representation and play an important role in classification and numerous knowledge-rich applications, yet quantitative taxonomy evaluation remains to be overlooked and left much to be desired. While studies focus on automatic taxonomy construction (ATC) for extracting meaningful structures and semantics from large corpora, their evaluation is usually manual and subject to bias and low reproducibility. Companies wishing to improve their domain-focused taxonomies also suffer from lacking ground-truths. In fact, manual taxonomy evaluation requires substantial labour and expert knowledge.
As a result, we argue in this thesis that automatic taxonomy evaluation (ATE) is just as important as taxonomy construction. We propose two novel taxonomy evaluation methods for automatic taxonomy scoring, leveraging supervised classification for labelled corpora and unsupervised language modelling as a knowledge source for unlabelled data. We show that our evaluation proxies can exert similar effects and correlate well with human judgments and that language models can imitate human experts on knowledge-rich tasks.
|
Page generated in 0.0435 seconds