• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'apprentissage et l'inférence adaptatifs : Applications à l'ajustement d'hyperparamètres et à la physique des astroparticules

Bardenet, Rémi 19 November 2012 (has links) (PDF)
Les algorithmes d'inférence ou d'optimisation possèdent généralement des hyperparamètres qu'il est nécessaire d'ajuster. Nous nous intéressons ici à l'automatisation de cette étape d'ajustement et considérons différentes méthodes qui y parviennent en apprenant en ligne la structure du problème considéré.La première moitié de cette thèse explore l'ajustement des hyperparamètres en apprentissage artificiel. Après avoir présenté et amélioré le cadre générique de l'optimisation séquentielle à base de modèles (SMBO), nous montrons que SMBO s'applique avec succès à l'ajustement des hyperparamètres de réseaux de neurones profonds. Nous proposons ensuite un algorithme collaboratif d'ajustement qui mime la mémoire qu'ont les humains d'expériences passées avec le même algorithme sur d'autres données.La seconde moitié de cette thèse porte sur les algorithmes MCMC adaptatifs, des algorithmes d'échantillonnage qui explorent des distributions de probabilité souvent complexes en ajustant leurs paramètres internes en ligne. Pour motiver leur étude, nous décrivons d'abord l'observatoire Pierre Auger, une expérience de physique des particules dédiée à l'étude des rayons cosmiques. Nous proposons une première partie du modèle génératif d'Auger et introduisons une procédure d'inférence des paramètres individuels de chaque événement d'Auger qui ne requiert que ce premier modèle. Ensuite, nous remarquons que ce modèle est sujet à un problème connu sous le nom de label switching. Après avoir présenté les solutions existantes, nous proposons AMOR, le premier algorithme MCMC adaptatif doté d'un réétiquetage en ligne qui résout le label switching. Nous présentons une étude empirique et des résultats théoriques de consistance d'AMOR, qui mettent en lumière des liens entre le réétiquetage et la quantification vectorielle.
2

Towards adaptive learning and inference : applications to hyperparameter tuning and astroparticle physics / Contributions à l'apprentissage et l'inférence adaptatifs : applications à l'ajustement d'hyperparamètres et à la physique des astroparticules

Bardenet, Rémi 19 November 2012 (has links)
Les algorithmes d'inférence ou d'optimisation possèdent généralement des hyperparamètres qu'il est nécessaire d'ajuster. Nous nous intéressons ici à l'automatisation de cette étape d'ajustement et considérons différentes méthodes qui y parviennent en apprenant en ligne la structure du problème considéré.La première moitié de cette thèse explore l'ajustement des hyperparamètres en apprentissage artificiel. Après avoir présenté et amélioré le cadre générique de l'optimisation séquentielle à base de modèles (SMBO), nous montrons que SMBO s'applique avec succès à l'ajustement des hyperparamètres de réseaux de neurones profonds. Nous proposons ensuite un algorithme collaboratif d'ajustement qui mime la mémoire qu'ont les humains d'expériences passées avec le même algorithme sur d'autres données.La seconde moitié de cette thèse porte sur les algorithmes MCMC adaptatifs, des algorithmes d'échantillonnage qui explorent des distributions de probabilité souvent complexes en ajustant leurs paramètres internes en ligne. Pour motiver leur étude, nous décrivons d'abord l'observatoire Pierre Auger, une expérience de physique des particules dédiée à l'étude des rayons cosmiques. Nous proposons une première partie du modèle génératif d'Auger et introduisons une procédure d'inférence des paramètres individuels de chaque événement d'Auger qui ne requiert que ce premier modèle. Ensuite, nous remarquons que ce modèle est sujet à un problème connu sous le nom de label switching. Après avoir présenté les solutions existantes, nous proposons AMOR, le premier algorithme MCMC adaptatif doté d'un réétiquetage en ligne qui résout le label switching. Nous présentons une étude empirique et des résultats théoriques de consistance d'AMOR, qui mettent en lumière des liens entre le réétiquetage et la quantification vectorielle / Inference and optimization algorithms usually have hyperparameters that require to be tuned in order to achieve efficiency. We consider here different approaches to efficiently automatize the hyperparameter tuning step by learning online the structure of the addressed problem. The first half of this thesis is devoted to hyperparameter tuning in machine learning. After presenting and improving the generic sequential model-based optimization (SMBO) framework, we show that SMBO successfully applies to the task of tuning the numerous hyperparameters of deep belief networks. We then propose an algorithm that performs tuning across datasets, mimicking the memory that humans have of past experiments with the same algorithm on different datasets. The second half of this thesis deals with adaptive Markov chain Monte Carlo (MCMC) algorithms, sampling-based algorithms that explore complex probability distributions while self-tuning their internal parameters on the fly. We start by describing the Pierre Auger observatory, a large-scale particle physics experiment dedicated to the observation of atmospheric showers triggered by cosmic rays. The models involved in the analysis of Auger data motivated our study of adaptive MCMC. We derive the first part of the Auger generative model and introduce a procedure to perform inference on shower parameters that requires only this bottom part. Our model inherently suffers from label switching, a common difficulty in MCMC inference, which makes marginal inference useless because of redundant modes of the target distribution. After reviewing existing solutions to label switching, we propose AMOR, the first adaptive MCMC algorithm with online relabeling. We give both an empirical and theoretical study of AMOR, unveiling interesting links between relabeling algorithms and vector quantization.
3

Contributions à l'apprentissage et l'inférence adaptatifs : Applications à l'ajustement d'hyperparamètres et à la physique des astroparticules

Bardenet, Rémi 19 November 2012 (has links) (PDF)
Les algorithmes d'inférence ou d'optimisation possèdent généralement des hyperparamètres qu'il est nécessaire d'ajuster. Nous nous intéressons ici à l'automatisation de cette étape d'ajustement et considérons différentes méthodes qui y parviennent en apprenant en ligne la structure du problème considéré.La première moitié de cette thèse explore l'ajustement des hyperparamètres en apprentissage artificiel. Après avoir présenté et amélioré le cadre générique de l'optimisation séquentielle à base de modèles (SMBO), nous montrons que SMBO s'applique avec succès à l'ajustement des hyperparamètres de réseaux de neurones profonds. Nous proposons ensuite un algorithme collaboratif d'ajustement qui mime la mémoire qu'ont les humains d'expériences passées avec le même algorithme sur d'autres données.La seconde moitié de cette thèse porte sur les algorithmes MCMC adaptatifs, des algorithmes d'échantillonnage qui explorent des distributions de probabilité souvent complexes en ajustant leurs paramètres internes en ligne. Pour motiver leur étude, nous décrivons d'abord l'observatoire Pierre Auger, une expérience de physique des particules dédiée à l'étude des rayons cosmiques. Nous proposons une première partie du modèle génératif d'Auger et introduisons une procédure d'inférence des paramètres individuels de chaque événement d'Auger qui ne requiert que ce premier modèle. Ensuite, nous remarquons que ce modèle est sujet à un problème connu sous le nom de label switching. Après avoir présenté les solutions existantes, nous proposons AMOR, le premier algorithme MCMC adaptatif doté d'un réétiquetage en ligne qui résout le label switching. Nous présentons une étude empirique et des résultats théoriques de consistance d'AMOR, qui mettent en lumière des liens entre le réétiquetage et la quantification vectorielle.
4

Model-based hyperparameter optimization

Crouther, Paul 04 1900 (has links)
The primary goal of this work is to propose a methodology for discovering hyperparameters. Hyperparameters aid systems in convergence when well-tuned and handcrafted. However, to this end, poorly chosen hyperparameters leave practitioners in limbo, between concerns with implementation or improper choice in hyperparameter and system configuration. We specifically analyze the choice of learning rate in stochastic gradient descent (SGD), a popular algorithm. As a secondary goal, we attempt the discovery of fixed points using smoothing of the loss landscape by exploiting assumptions about its distribution to improve the update rule in SGD. Smoothing of the loss landscape has been shown to make convergence possible in large-scale systems and difficult black-box optimization problems. However, we use stochastic value gradients (SVG) to smooth the loss landscape by learning a surrogate model and then backpropagate through this model to discover fixed points on the real task SGD is trying to solve. Additionally, we construct a gym environment for testing model-free algorithms, such as Proximal Policy Optimization (PPO) as a hyperparameter optimizer for SGD. For tasks, we focus on a toy problem and analyze the convergence of SGD on MNIST using model-free and model-based reinforcement learning methods for control. The model is learned from the parameters of the true optimizer and used specifically for learning rates rather than for prediction. In experiments, we perform in an online and offline setting. In the online setting, we learn a surrogate model alongside the true optimizer, where hyperparameters are tuned in real-time for the true optimizer. In the offline setting, we show that there is more potential in the model-based learning methodology than in the model-free configuration due to this surrogate model that smooths out the loss landscape and makes for more helpful gradients during backpropagation. / L’objectif principal de ce travail est de proposer une méthodologie de découverte des hyperparamètres. Les hyperparamètres aident les systèmes à converger lorsqu’ils sont bien réglés et fabriqués à la main. Cependant, à cette fin, des hyperparamètres mal choisis laissent les praticiens dans l’incertitude, entre soucis de mise en oeuvre ou mauvais choix d’hyperparamètre et de configuration du système. Nous analysons spécifiquement le choix du taux d’apprentissage dans la descente de gradient stochastique (SGD), un algorithme populaire. Comme objectif secondaire, nous tentons de découvrir des points fixes en utilisant le lissage du paysage des pertes en exploitant des hypothèses sur sa distribution pour améliorer la règle de mise à jour dans SGD. Il a été démontré que le lissage du paysage des pertes rend la convergence possible dans les systèmes à grande échelle et les problèmes difficiles d’optimisation de la boîte noire. Cependant, nous utilisons des gradients de valeur stochastiques (SVG) pour lisser le paysage des pertes en apprenant un modèle de substitution, puis rétropropager à travers ce modèle pour découvrir des points fixes sur la tâche réelle que SGD essaie de résoudre. De plus, nous construisons un environnement de gym pour tester des algorithmes sans modèle, tels que Proximal Policy Optimization (PPO) en tant qu’optimiseur d’hyperparamètres pour SGD. Pour les tâches, nous nous concentrons sur un problème de jouet et analysons la convergence de SGD sur MNIST en utilisant des méthodes d’apprentissage par renforcement sans modèle et basées sur un modèle pour le contrôle. Le modèle est appris à partir des paramètres du véritable optimiseur et utilisé spécifiquement pour les taux d’apprentissage plutôt que pour la prédiction. Dans les expériences, nous effectuons dans un cadre en ligne et hors ligne. Dans le cadre en ligne, nous apprenons un modèle de substitution aux côtés du véritable optimiseur, où les hyperparamètres sont réglés en temps réel pour le véritable optimiseur. Dans le cadre hors ligne, nous montrons qu’il y a plus de potentiel dans la méthodologie d’apprentissage basée sur un modèle que dans la configuration sans modèle en raison de ce modèle de substitution qui lisse le paysage des pertes et crée des gradients plus utiles lors de la rétropropagation.

Page generated in 0.0418 seconds